Installation manual

Eccentric chuck
– Adjustable via C-Axis
Table of contents

1 General ... 5
 1.1 Information about this manual ... 5
 1.2 Explanation of symbols .. 5
 1.3 Limitations of liability .. 6
 1.4 Max. RPM .. 7
 1.5 Copyright .. 7
 1.6 Spare parts .. 8
 1.7 Warranty terms .. 8

2 Safety .. 9
 2.1 Responsibility of the customer .. 9
 2.2 Personnel requirements ... 10
 2.3 Intended use ... 11
 2.4 Personal protective equipment .. 12
 2.5 Special dangers ... 13
 2.6 Further warnings ... 16
 2.7 Clamping force .. 17
 2.8 Screws .. 18
 2.9 Functionality ... 18
 2.10 Environmental protection .. 19

3 Technical data ... 20
 3.1 General information ... 20
 3.2 Overview .. 20
 3.3 Operating conditions .. 21
 3.4 Power specifications ... 21
 3.5 Dimensional sheet ... 22
 3.6 Type designation .. 22

4 Structure and function ... 23
 4.1 Overview and brief description .. 23
 4.2 Optional Accessories .. 24
 4.2.1 Changing fixture .. 25
 4.2.2 Clamping head ... 25
 4.2.3 Work piece end-stop .. 25
 4.2.4 Grease ... 26
 4.2.5 Grease gun ... 26

5 Transporting, packaging, storing ... 27
 5.1 Safety instructions for transporting ... 27
 5.2 Symbols on the packaging .. 27
 5.3 Transport inspection .. 27
 5.4 Unpacking and inner-company transport ... 28
 5.5 Packaging ... 29
 5.6 Storing ... 30
6 Assembly..31
 6.1 Preparations...31
 6.2 Installation...32
 6.3 Installation of the clamping device..34
 6.3.1 Installing the base end-stop..36
 6.3.2 Disassembling the base end-stop...38
 6.3.3 Assemble / disassemble the clamping head..40
 6.3.4 Assembly of the workpiece end-stop...41
 6.4 Function..41
 6.5 Applicable spindle speed...42
 6.6 Work piece...43
 6.7 Inspections...44
 6.8 Control of the stroke position..45
 6.9 Activities after production is concluded..45
7 C-Axis movement for Off-Centre Positioning..46
 7.1 Angle movement and adjusting dimension...47
 7.2 Max. eccentricity of 5 mm..48
 7.2.1 C-axis movement at adjusting measure A=38.25 mm.................................48
 7.3 Max. eccentricity of 6 mm..49
 7.3.1 C-axis movement at adjusting measure A=38.25 mm.................................49
 7.4 Max. eccentricity of 10 mm..50
 7.4.1 C-axis movement at adjusting measure A=47.0 mm.................................50
 7.5 Max. eccentricity of 15 mm..51
 7.5.1 C-axis movement at adjusting measure A=48.5 mm.................................51
 7.5.2 C-axis movement at adjusting measure A=49.0 mm.................................52
 7.5.3 C-axis movement at adjusting measure A=51.0 mm.................................53
 7.5.4 C-axis movement at adjusting measure A=58.6 mm.................................54
 7.5.5 C-axis movement at adjusting measure A=60.0 mm.................................55
 7.5.6 C-axis movement at adjusting measure A=67.1 mm.................................56
 7.6 Max. eccentricity of 16 mm..57
 7.6.1 C-axis movement at adjusting measure A=60.0 mm.................................57
 7.7 Max. eccentricity of 17 mm..58
 7.7.1 C-axis movement at adjusting measure A=90.0 mm.................................58
8 Disassembly, subsequent storage, disposal..59
 8.1 Safety...59
 8.2 Disassembly of the workpiece end-stop...61
 8.3 Disassembly of the eccentric chuck..61
 8.4 Subsequent storage of the clamping device..62
 8.5 Disposal..62
9 Maintenance...63
 9.1 General..63
 9.2 Cleaning..64
 9.3 Preservation..65
 9.4 Use of lubricant...65
 9.5 Maintenance schedule..66

Order Hotline +49 7144.907-333
9.6 Bolt torque..67
10 Trouble shooting..68
 10.1 Safety..68
 10.2 Trouble shooting table..69
 10.3 Start-up after corrected fault..70
11 Appendix..71
 11.1 Service Hotline..71
 11.2 Representatives..71
 11.2.1 Europe..71
 11.2.2 America..74
 11.2.3 Asia..74
 11.2.4 Australia..75
 11.2.5 Africa...75
12 Index...77
EC Declaration of conformity...79
1 General

1.1 Information about this manual

This manual enables safe and efficient handling of the clamping device.

The manual is a component of the clamping device and must be kept in the immediate vicinity of the clamping device where it is accessible for personnel at all times. Personnel must have carefully read and understood this manual prior to starting all tasks. The basic prerequisite for safe work is compliance with all the safety instructions and handling instructions in this manual.

Illustrations in this manual are provided for a basic understanding and may deviate from the actual model of the clamping device.

It is assumed that the reader is familiar with standard procedures, such as cleaning the mounting surfaces.

1.2 Explanation of symbols

Safety instructions Safety instructions are indicated by symbols in this operating manual. The safety instructions are introduced by signal words that express the scope of the hazard.

The safety instructions must be strictly adhered to. You must act prudently to prevent accidents, personal injury, and material damage.

- **DANGER**

 … indicates an imminent dangerous situation than can result in death or serious injury if it is not avoided.

- **WARNING**

 … indicates a possible dangerous situation that can result in death or serious injury if it is not avoided.

- **CAUTION**

 … indicates a possible dangerous situation that can result in minor or light injury if it es not avoided.
1.3 Limitations of liability

All information and instructions in this operating manual have been provided under due consideration of applicable standards and regulations, the current state of technology, as well as our many years of experience.

The manufacturer assumes no liability for damage due to:

- Failure to follow the instructions in the manual
- Non-intended use
- Deployment of untrained personnel
- Unauthorized conversions
- Technical changes
- Use of non-approved spare parts

The actual scope of delivery can vary from the explanations and graphic representations provided in this manual in the case of special versions, if supplemental order options are desired, or on the basis of the latest technical changes.

The agreed obligations in the delivery contract, the general terms and conditions, as well as delivery conditions of the manufacturer, and the statutory regulations valid at the time the contract was concluded, apply.
Eccentric chuck – C-Axis. General

1.4 Max. RPM

CAUTION!

The maximum permissible speed is marked on the product.

By the combination of a clamping device and an add on clamping element a reduction of the maximum permissible speed may be necessary.

- Of all RPMs of the groups specified, the lowest given RPM must always be used.

Note that the clamping force is influenced by the centrifugal force of the clamping elements.

- If necessary, adjust the machining force!

1.5 Copyright

This manual is protected by copyright and is provided exclusively for internal purposes.

Delivery of the operating manual to third parties, duplication in any form – including excerpts – as well as exploitation and/or communication of the content, are not permitted [except for internal use] without written approval from the manufacturer.

Actions to the contrary make damage compensation mandatory. We reserve the right to enforce additional claims.
1.6 Spare parts

WARNING!
Safety risk if the wrong spare parts are used!

Incorrect or defective spare parts can cause damage, malfunction, or total failure; they can also impair safety.

- Only use manufacturer's original spare parts.

Only purchase spare parts from authorized dealers or direct from the manufacturer. Addresses are in the appendix.

1.7 Warranty terms

The warranty terms are included in the manufacturer's terms and conditions.
2 Safety

This section provides an overview of all the important safety aspects for optimal protection of personnel, as well as for safe and trouble-free operation.

2.1 Responsibility of the customer

The device is used in industrial applications. Consequently, the owner of the device is subject to legal industrial safety obligations.

In addition to the safety instruction in this manual, generally valid safety and accident protection guidelines, and environmental protection guidelines as well as the machines' manual must be adhered to and complied with for the area of implementation of the device.

Note in particular that the status scans of the machine must be adjusted to the respective clamping device.

DANGER!
Risk of injury due to thrown out parts!

Incorrect machine settings may lead to the throwing out of parts.

- The status scans of the machine must be set to the respective clamping device.
- Regularly check the status scans of the machine, see chapter »Maintenance Schedule«. If the end position cannot be reached, the jaw module may no longer be used.
- Observe the operating instructions of the machine.

WARNING!
Risk of injury!

An incorrect media supply [hydraulic, pneumatic], e.g. by damaged or missing seals or pipes, can cause serious personal injury.

- Hydraulic and / or pneumatic tubes must be secured by the machine by check valves and a permanent pressure monitoring!
2.2 Personnel requirements

WARNING!

Danger of injury due to insufficient qualification!

Improper handling of the clamping device can cause serious injury or material damage.

- Only have activities performed by personnel who are qualified to perform these activities.

The following qualifications are cited in the operating manual for the various activity areas.

- **Specialized personnel**
 are personnel who due to their specialized training, skills, and experience, as well as knowledge of the applicable regulations, are capable of executing the tasks assigned to them and of recognizing and avoiding possible hazards on their own.

- **Hydraulic specialist**
 The hydraulic specialist has been trained for the particular task area in which he is active and is familiar with the relevant standards and regulations. Due to his specialized training and experience the hydraulic specialist can perform tasks on hydraulic equipment and recognize and avoid possible dangers on his own.

- **Electric specialist**
 The electric specialist has been trained for the particular task area in which he is active and is familiar with the relevant standards and regulations. Due to his specialized training and experience the electric specialist can perform tasks on electric equipment and recognize and avoid possible dangers on his own.
Only persons from whom it can be expected that they reliably execute their work are considered as personnel. Persons whose capability to react is impaired, for instance through drugs, alcohol, or medication, are not approved.

- Comply with age-specific and job-specific regulations that are applicable at the installation site when selecting personnel.

2.3 Intended use

The clamping device is designed for installation in a machine tool according to CE compliant. Within the machine tool the clamping device is designed exclusively as a through-bore chuck for bar work and / or as an end-stop chuck for chuck work.

The clamping device should only be mounted, operated, maintained, and cleaned by instructed, specialized personnel.

Intended use also includes compliance with all the instructions in this manual.

The clamping device is to be used for the case of application contractually agreed between the producer / deliverer and the user, as well as such cases of application described in the product description which are also in accordance with the technical values.

The safe function of the clamping device is, as far as it can be foreseen, guaranteed when it is used for the intended purpose in accordance with the appropriate safety regulations.

Any use that extends beyond the intended use, or any other use of the clamping device is considered to be misuse and can cause dangerous situations.

WARNING!

Danger due to misuse!

Misuse of the clamping device can cause dangerous situations.

Particularly refrain from the following uses of the clamping device:

- Use in machines other than machine tools.
- Use in machine tools with technical data other than that specified on the clamping device.
Claims of any type due to damage arising from non-intended use are excluded.

Unintended and improper use of the Power Chuck is for example
- If workpieces are not clamped properly
- If safety regulations are disregarded and persons are working at the clamping device without additional protective devices e.g. for machining.
- If the clamping device is used for machines or tools for which it is not intended.

2.4 Personal protective equipment

Wearing of personal protective equipment is required to minimize health hazards when working with the device.

- Always wear the protective equipment necessary for the respective task when working with the device.
- Follow the instructions that have been posted in the work area.

Always wear

For all tasks always wear:

Protective work clothing

is tight-fitting work clothing with low resistance to tearing, with tight sleeves, and without projecting parts. It is primarily used to protect against entanglement by moving machine parts.

Do not wear rings, chains, or other jewelry.

Safety footwear

for protection against heavy falling parts and slipping on slippery substrates.

For special tasks wear

Special protective equipment is required when executing special tasks. Separate reference is made to this equipment in the specific sections of this manual. This special protective equipment is explained below:
2.5 Special dangers

In the following section residual risks are cited that occur due to installation of the clamping device in a machine tool. In each case the residual risks that have been determined based on a risk analysis of the machine must be specified by the customer.

- Follow the safety instructions listed here and the warnings in the other sections of this manual to reduce health hazards and to avoid dangerous situations.

Horizontal / lying parts

WARNING!

Danger of injury due to horizontal parts!

Before transporting the clamping device in horizontal condition:

- Put the clamping device on a non-slip pad
- Screw in the eye bolts
Suspended loads

WARNING!

Life-threatening danger due to suspended loads!

Some clamping devices must be lifted with a crane. When lifting the clamping device there is a life-threatening hazard due to falling parts or parts swinging out of control.

- Never step under suspended loads.
- Comply with the instructions concerning the intended attachment points. Ensure that the sling gear is securely seated!
- Do not attach lifting gear in projecting components.
- Only use approved hoists and sling gear with sufficient bearing capacity.
- Do not use rope and belts that are torn or frayed.

Moving parts

WARNING!

Danger of injury due to moving parts!

Rotating parts of the clamping device can cause serious injuries.

- Do not reach into moving parts or handle moving parts during operation.
- Note the gap dimensions of moving parts.
- Do not open covers when the device is in operation.
- Be aware of afterrun time:
 Prior to opening the covers ensure that all parts have come to a standstill.
- Wear tight-fitting protective work clothing in the danger zone.
Wrong clamping of the work piece

WARNING!
Danger of injury due to incorrect clamping of the work piece!

Incorrect work piece clamping may lead to the ejection of the work piece and result in serious injuries.

Under dimensioned (tolerance) parts can lead to incorrect clamping!

- Check the unmachined work pieces at random on dimensional accuracy.

Too low supply pressure can lead to the reduction of clamping force!

Too high supply pressure can lead to damage of the components of the clamping device!

- Check and adjust, if necessary, the supply pressure regularly.

- Do random checks of the unmachined work pieces on dimensional accuracy.

Missing changing parts

WARNING!
Danger of injury due to missing changing parts!

When operating the clamping device without changing parts [segmented clamping bushing, clamping heads, work piece end-stops] there is a higher danger of crushing injuries due to the stroke of movable components of the clamping device.

- The clamping process may not be initiated without assembled segmented clamping bushing and/or work piece end-stop.

Parts with sharp edges

WARNING!
Risk of injury!

When screwing in individual components such as for example work piece end-stops, threaded adapters and similar devices that are equipped with an external thread or wear caused by burrs, there is risk of cutting.

- The operation must be done only by qualified personnel.

- Wearing of gloves / [PSA] is required!
CAUTION!
Risk of injury!
A special use-dependent or job-based design can result in variations in the clamping strokes and thus the clamping force.
- The notes on the associated clamping situations or product drawing must always be observed

2.6 Further warnings

WARNING!
Risk of injury!
Never reach for the clamping device while the spindle is rotating. Before starting to work on the mandrel, make sure the machine spindle cannot be put in motion.

WARNING!
Risk of injury!
Falling down of the clamping device or its parts can cause severe bruises and fractures.
The dead weight of the clamping device or its parts can lead to high physical stress.

WARNING!
Risk of injury!
By repeated reworking or wear and tear of the clamping surfaces sharp edges and burrs may appear and lead to severe cutting damages.
WARNING!
Risk of injury!
Missing o-rings or seals may cause severe injuries!
Due to missing / fallen out O-rings and seals compressed air or hydraulic fluids which are under high pressure may expel!
- Make sure that all O-rings / seals for the hydraulic / pneumatic connections are available and undamaged!
- If necessary lubricate them before assembly and/or during service.

WARNING!
Damage of clamping device!
The clamping device may be released exclusively in the standing condition!

Risk of injury!
Leaking [sprayed out] hydraulic oil can cause serious injury.
- Make sure that all O-rings / seals for the hydraulic and/or pneumatic connections are available and undamaged

2.7 Clamping force

The achieved clamping force can vary due to the maintenance condition of the clamping device [state of lubrication and degree of contamination] [see chapter »Maintenance«].
The clamping force must be checked at regular intervals. This requires the use of static clamping force measuring devices.

CAUTION!
Damages due to excessive draw and compressive force!
An excessive draw force and/or compressive force may damage the clamping device.
- The max. draw force and compressive force may not be exceeded.
2.8 Screws

Moving parts

WARNING!
Danger of injury due to screws and stud screws being accelerated out of the device!!

Screws and stud screws radially attached to the product can be accelerated out of the device and cause severe injuries.

- At the product radially mounted screws and stud screws which were loosened for assembly and maintenance must be re-tightened with the correct tightening torque!
 The tightening torque is given at the product itself, near the screw or threaded pin, and/or given in chapter »Bolt torque«.

- All screws or stud screws that are not marked with a tightening torque specification are tightened with the prescribed tightening torque and locked [medium-strength bonding] in the factory and should only be unscrewed after consultation with the manufacturer. If in doubt you must contact the manufacturer immediately do determine the subsequent procedure.

2.9 Functionality

NOTICE!
With high contamination of the clamping device the functionality is no longer guaranteed.

- The cleaning and maintenance intervals must be observed.
2.10 Environmental protection

NOTE!

Environmental hazard due to incorrect handling!

Incorrect handling of environmentally hazardous substances, particularly improper disposal, can cause significant environmental damage.

- Always comply with the instructions cited below
- If environmentally harmful substances should inadvertently get into the environment, initiate suitable measures immediately. If in doubt notify the responsible municipal authority about the damage.

The following environmentally harmful substances are used:

Lubricants

Lubricants like greases and oils can contain toxic substances. Ensure that they do not get into the environment.

The device must be disposed of by a specialized disposal company.

To achieve trouble-free operational performance of the clamping device only use HAINBUCH lubricants. See the appendix for reference addresses.
3 Technical data

3.1 General information

The product is available in different sizes and variants.

Information about e.g.
- dimensions
- weight

you will find on the corresponding drawing that you can order at HAINBUCH.

3.2 Overview

*) Guiding dimension »A«

e Eccentricity »e«
WARNING!
Risk of injury!
Using false technical data can lead to serious personal injury and property damage.
- The technical data [label on the product, assembly drawing] must be observed and may not be modified by the operator!

3.3 Operating conditions

<table>
<thead>
<tr>
<th>Environment</th>
<th>Specification</th>
<th>Value</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature range</td>
<td></td>
<td>15 - 65</td>
<td>°C</td>
</tr>
<tr>
<td>Mechanical actuating</td>
<td>In each possible operating condition the maximum draw force and compressive force may not be exceeded!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4 Power specifications

NOTE!
Material damage if the power specifications do not agree!
- If the power specifications of clamping device, machine adapter and machine do not agree, severe damage extending to total damage can occur.
- Only operate clamping devices and adapters in machines with the same power specifications.

Information on maximum clamping force and draw tube force is provided on the clamping device and the adapter.
3.5 Dimensional sheet

Dimension sheets for the respective product can be requested from HAINBUCH.

3.6 Type designation

The type designation is on the product and includes the following information:

1. ID no. [marked with the # symbol]
2. Maximum speed [rpm]
3. Maximum clamping force [kN]

Fig. 2
4 Structure and function

4.1 Overview and brief description

* Illustration for example

Fig. 3

A Threaded adapter L Clamping head
B Spindle flange M Cylindrical screws
D Coupling N Adjusting unit
E Housing O Testing edge – concentricity
G Clamping element reception spindle flange
H Cylindrical screws P Testing surface – concentricity
J Clamping bolt clamping element reception
K Adjusting tool R Feather key
Brief description

Concentric and eccentric complete machining in a single clamping set-up? That's right! With our compact chuck you can now turn an eccentric position on the work piece – in a single set-up without having to re-chuck it!

Thus you save time and money. Change-over from centric to eccentric takes just a few seconds – it is automatic and convenient due to the setting tool in the turret and the C-axis of the machine spindle.

Minimum set-up times and no machine changes whatsoever. And first and foremost: You can use your normal clamping cylinder.

Key advantages:

- Infinite eccentric adjustment via the C-axis
- Concentric and eccentric machining in a single clamping set-up
- Different eccentric dimensions are possible with the same chuck and clamping head
- Minimal inertia loss
- Work piece stabilization through axial draw force applied against the work piece end-stop

4.2 Optional Accessories

The accessories described here are not included in the scope of delivery.

Specially developed segmented clamping bushings match to the respective maximum RPM are available for each clamping device. Trouble-free and precise function of HAINBUCH clamping devices is only ensured when using original HAINBUCH segmented clamping bushings.

Lubricating grease and grease gun are required for cleaning and preservation of the clamping device. The lubricating grease is also specially matched for protection of the vulcanized segments of the segmented clamping bushings and increase their service life and elasticity by a significant factor.
4.2.1 Changing fixture

Manual changing fixture

The pins of the changing fixture are inserted in the matching holes in the clamping head. The changing fixture is tensioned via hand force. The clamping head is firmly clamped in the changing fixture and can be inserted into the mounted clamping device with the aid of the changing fixture.

Pneumatic changing fixture

The pins of the changing fixture are inserted in the matching holes in the clamping head. The changing fixture is tensioned via compressed air. The clamping head is firmly clamped in the changing fixture and can be inserted into the mounted clamping device with the aid of the changing fixture.

4.2.2 Clamping head

The clamping heads are used to accommodate the work piece that will be machined. They consist of hard steel and rubber segments that are connected via a vulcanizing process. Depending on the requirements of the work piece there are clamping heads in different sizes and with different profiles and bores.

4.2.3 Work piece end-stop

The work piece end-stop is manufactured with an end-stop dimension according to the customers request. In combination with the clamping head and the chuck it provides a functional unit.
4.2.4 Grease

The universal grease for chuck and mandrel lubrication is supplied in a 1000g can. The order number for the universal grease is 2085/0003; it can be ordered from HAINBUCH.

4.2.5 Grease gun

The grease gun is filled with universal grease, which is pressed into the clamping device. The grease gun has a pointed mouthpiece. The order number for the grease gun is 2086/0004; it can be ordered from HAINBUCH.
5 Transporting, packaging, storing

5.1 Safety instructions for transporting

Unbalanced package

WARNING!

Danger of falling due to an unbalanced package

Packed goods can have an unbalanced package. If attached incorrectly the package can tip and cause life-threatening injuries.

- Note the markings on the packages.
- Attach the crane hook in such a manner that it is located above the center of gravity.
- Carefully lift and see if the load tilts. If necessary change the attachment.

Transport!

- For transport always use a suitable clamping means / crane.
- Make sure that a rolling / falling of the clamping device is not possible.

5.2 Symbols on the packaging

Fragile

Identifies packages with fragile or sensitive contents.
Handle the packed goods with care; do not allow them to fall, and do not subject them to impact.

Protect from moisture

Keep packed goods dry and protected against moisture.

5.3 Transport inspection

Check delivery immediately upon receipt to ensure that delivery is complete and to identify any transport damage.

Proceed as follows if there is apparent external damage:

- Do not accept the delivery, or only accept it with reservation.
Note the extent of transport damage on the transport documents or on the transport company's delivery ticket.

Submit a complaint.

Report any defect as soon as it is detected. Claims for damage compensation can only be enforced during the applicable periods for giving notice of lack of conformity.

5.4 Unpacking and inner-company transport

Usually the clamping device is packed vertically. Depending on the size it has threaded bores in the circumference of the clamping device for assembling the eye bolts.

In these threaded bores lifting eye bolts can be screwed in.

To safely lift the clamping device out of the package it must be hooked into a crane depending on the weight.

For transporting with transport trolley the clamping device must be positioned in standing condition. Make sure that a non-slip pad has been laid.

All tools and accessories which are not in scope of delivery are marked as optional in the operating instructions.

Two people are required for this task.

Special tools required:

Crane and lifting eye bolts from weight 15 kg

1. Screw lifting eye bolts into the thread in the circumference of the clamping device.

2. Hook the load-handling equipment into the lifting eye bolts.

3. Use a crane to carefully lift the clamping device out of the transport packaging and put it down on a stable, level substrate.

4. Prevent the clamping device against rolling away.
5.5 Packaging

About the packaging

Individual packages are packed according to the expected transport conditions. Environmentally-friendly materials have been used exclusively for the packaging.

Packaging should protect the specific components from transport damage, corrosion, and other damage until installation. Therefore do not destroy the packaging, remove it just before installation.

The packed goods are sealed in foil airtight and packed in cartons. See the »Technical Data« section for the specific weight of the respective sizes.

Handling packaging materials

Dispose of packaging materials in accordance with the respectively valid statutory regulations and local guidelines.

NOTE!
Improper disposal causes environmental damage!

Packaging materials are valuable raw materials and in many cases they can be reused, or they can be effectively treated and recycled.

- Dispose of packaging materials in an environmentally responsible manner.
- Comply with locally applicable disposal guidelines. If necessary commission a specialized company to dispose of packaging.
5.6 Storing

Under certain circumstances instructions for storage and subsequent storage are affixed to the packages that extend beyond the requirements cited here. Comply with these instructions accordingly.

Storage of packages

Only store packages under the following conditions:

- Do not store outdoors.
- Store in a dry and dust-free location.
- Do not expose to aggressive media.
- Protect from direct sunlight.
- Avoid mechanical vibration.
- Storage temperature: 15 bis 35 °C.
- Relative humidity: max. 60 %.
- For storage periods longer than 3 months:
 - Check the general condition of all parts and the packaging at regular intervals.
 - Touch up or re-apply anti-corrosion agents as needed.

Subsequent storage of the clamping device

Only re-store the clamping device under the following conditions:

- Thoroughly clean the clamping device prior to subsequent storage [see section »Cleaning«].
- Thoroughly oil and grease the clamping device. [see section »Cleaning«].
- Store the clamping device in airtight foil.
- The clamping device must be stored securely in position. If this is not guaranteed, use a suitable container for the clamping device or equip the shelf with a circumferential securing edge.
6 Assembly

WARNING!
During the initial installation of the clamping device severe injuries may occur.
- The initial installation must be done only by qualified personnel.
- All screws remaining in the clamping must be tightened firmly.
- All tools and keys must be removed after installation.

WARNING
Risk of injury due to stored energy!
The clamping device can be designed with disc springs. These disc springs are under permanent tension! The release of the stored energy can cause injuries!
- By loosening the corresponding screws they have to be operated continuously alternately to reduce the clamping pressure to a minimum!
- Particularly cautious approach is required!
- For cleaning and maintenance disassemble the clamping device from the machine!
- Always wear personal protective equipment!

6.1 Preparations
The total weight of the clamping device, consisting of spindle flange and clamping unit, depends on the size and can be as much as 40 kg.
The individual weight of the spindle flange can be as much as 20 kg, and the clamping unit can weigh up to 23 kg [see section »Technical data«].
Depending on the weight, to safely lift the clamping device out of the package and position it in the machine it must be hooked into a crane.
Eccentric chuck – C-Axis. Assembly

6.2 Installation

WARNING!

Danger of injury due to falling components!
When mounting components can fall and cause severe injury and material damage.
- Two people are always required for this task.
- From size 80 use a crane.

WARNING!

Danger of injury due to unintentional startup of the tool spindle!
Unexpected start up of the tool spindle can cause severe injury.
- Prior to switching on automatic mode close all protective doors or hoods that are present on the machine tool.
- Unscrew all eye bolts from the clamping device and remove them from the interior of the machine.
- Only run the machine in set-up mode or jog mode.
- Always remove immediately all the tools and wrenches from the clamping device after use.

WARNING!

Risk of injury!
By operating the clamping device without changing parts [clamping head, segmented clamping bushing, work piece end-stops ...] there is an increased risk of crushing injuries by the stroke of the moving components of the clamping device.
By uncontrolled discharge of the clamping process [e.g. by incorrect installation of the energy supply or faulty programming] there is an increased danger.
WARNING!
Risk of injury!
Bending in the working area of the machine can cause severe head injuries!

CAUTION!
Risk of injury!
Unexpected start up of the tool spindle can cause severe injury.
- Make sure that the system is pressure-free and that a restart of the machine can be excluded!

Risk of injury!
Contamination of the mechanism can influence/reduce the stroke, thus the clamping force is reduced and thus, the work piece is not properly tightened and can be thrown out.
- Clean the product regularly [see chapter »Maintenance and service«].

Risk of injury!
If the clamping pressure is too low clamped work piece may be thrown out.
If the clamping pressure is too high severe damages of the components of the clamping device may occur the throwing out of the work piece.
- Before operation set the operation pressure back to operation level.
- The operating pressure should be checked and adjusted regularly!
- The dimension of the work pieces should be checked regularly [clamping-Ø]!

Transport!
- For transport always use a suitable clamping means / crane.
- Make sure that a rolling / falling of the clamping device is not possible.
WARNING!

Danger of injury due to vertical suspended spindle!

Bending into the machine work are when assembling overhead can cause severe head injuries.
- Secure components prior to overhead assembly.
- For assembly on a vertically suspended spindle always use a suitable mounting aid.

Positioning!

By clever positioning of the clamping device, the subsequent lubricating may be easier.
- Position the clamping device in a way that the lubrication points of the clamping device are always accessible.

6.3 Installation of the clamping device

Two people are required for this task.

Special tools required:
- Allen wrench
- Crane and eye bolts from weight 15 kg

WARNING!

Crushing danger due to machine movement!

Due to the design of the drawtube it may not always be avoided that in the assembly of drawtube adapter and the clamping unit / clamping device there is a gap between machine and clamping device.
- Crushing danger, that can cause severe injury.
- Never reach into the gap between machine / spindle flange and clamping device!

1. Put the machine tool in set up mode.
2. Remove all tools from the interior of the machine.
3. Set the clamping pressure of the machine tool on the lowest setting.
4. Move the drawtube of the machine tool into the front stop position.
5. Take the supplied chuck assembly and disassemble the spindle flange [B] and draw-tube adapter [A], by removing the 8 screws [H]. Take the draw-tube adapter [A] and the spindle-flange [B] to the machine.

6. Assemble the draw-tube adapter [A] on to the draw-tube. Turn the draw-tube adapter on to the draw-tube, till the end of the thread. Turn the draw-tube adapter reverse, till the feather-key [R] is in position with the respective key-slot on the spindle-flange [B] and the spindle-flange [B] on itself is in position with the drive-pin of the machine spindle.

7. Install the spindle flange [B] on to the machine spindle. Tighten the screws [H] lightly only, if your machine spindle has an cylindrical register.

8. Use an dial indicator, set on to the flange inner dia. 130 [O], and check the concentricity of the spindle flange. If necessary clock the flange by using an plastic mallet. Tighten the six screws [M] of the flange.

9. Check on the face of the chuck assembly [E], that the eccentric adjustment is in the centre [zero position]. For reference look at the scale on the face of the chuck body.

10. Take the chuck assembly [E]. Connect the bayonet joint with the draw-tube connector in the way, that after rotating the chuck assembly by 60°, the marking on the spindle flange [B] and the marking of the chuck assembly [E], match. [This marking is on the OD of the spindle-flange [B] and the OD of the chuck assembly [E].

11. Screw in the 8 screws [H], to tighten the chuck assembly [E] to the spindle flange [B]. Tighten the screws slightly only.

12. Check the concentricity of the chuck assembly at the inner taper [P], by using an dial indicator. If necessary clock the chuck assembly [E]. [The concentricity error should be smaller than 10 µ]. Tighten all screws [H] firmly, and check the concentricity error again.
13. Actuate the chucking cylinder. Move the draw-tube in chuck closed position and back in chuck open position again. With this actuation, the chuck assembly is mechanically reset in centric [zero] position.

The installation and alignment of the chuck is now completed.

NOTE!

Before the actual machining process is initiated, please adjust the chucking pressure to the required value.
You also need a minimum axial drawtube force of 15 kN to ensure the correct function of the chuck.
The maximum draw force – to be taken from the respective clamping device drawing – must not be exceeded!

6.3.1 Installing the base end-stop

If the eccentric chuck will be used as end-stop chuck the base end-stop must be mounted.

Special tools required:
- Allen wrench
- Mounting bolt or suitable cylindrical screw

1. Take the clamping head out of the taper.
2. Unscrew the clamping screws [see section »Disassembling the base end-stop«].
3. Screw the mounting bolt clockwise into the threaded bore in the center of the base end-stop.

Screw the mounting bolt into the base end-stop so that the polished side of the base end-stop is pointing up.
4. Use the mounting bolt to insert the base end-stop into the clamping device in such a manner that the lateral fixing pin of the base end-stop is aligned flush with the fixing groove in the centering disk.

NOTE!

Material damage is possible if the clamping screws are tightened too forcefully!

Tightening the clamping screws too forcefully can damage or destroy them. The base end-stop can no longer be clamped in.
- Tighten the clamping screws by hand.
- Do not screw in beyond the resistance.

5. Tighten all clamping screws of the base end-stop in the spindle flange clockwise with an allen wrench. The base end-stop is now secured.

6. Unscrew the mounting bolt counterclockwise.
6.3.2 Disassembling the base end-stop

If the eccentric chuck will be used as through-bore chuck the base end-stop must be disassembled.

Special tools required:
- Allen wrench
- Mounting bolt or suitable cylindrical screw

1. Take the clamping head out of the taper of the clamping element reception.
2. Insert the mounting bolt and screw it clockwise into the threaded bore in the center of the base end-stop.

NOTE!

Material damage if the clamping screws are loosened incorrectly!

Tightening the clamping screws too forcefully can damage or destroy them. The base end-stop can no longer be clamped in.
- Loosen the clamping screws by hand.
- Do not unscrew beyond the resistance.

3. Carefully loosen all clamping screws with an allen wrench counterclockwise until resistance is tangible.
 The base end-stop is now loosened.

4. Carefully pull out the base end-stop straight from the front.
WARNING!
Risk of injury!
Tools and gages that are thrown out of the machine can cause injury.
- Remove all tools and gages from the working area of the machine before the machine is started up.

Risk of injury!
If the clamping pressure is too low clamped work piece may be thrown out.
If the clamping pressure is too high severe damages of the components of the clamping device may occur the throwing out of the work piece.
- Before operation set the operation pressure back to operation level.
- The operating pressure should be checked and adjusted regularly!

WARNING!
Slipping danger due to escaping hydraulic fluid!
Escaping (sprayed out) hydraulic oil can cause serious injuries.
- Make sure that all o-rings/seals for the hydraulic / pneumatic interfaces are available and in undamaged condition.
- Make sure that the clamping device is empty and leakage of hydraulic fluid is avoided.
6.3.3 Assemble / disassemble the clamping head

For changing in the clamping head move the coupling of the clamping device to front end position.
Depending on the model of the clamping head the handling of the changing fixture is easier or more difficult.

![Fig. 19](image)

WARNING!
Danger of violent pressure to hands and fingers!
- During operation never reach into the coupling or slot area of the clamping head nor in the changing fixture.
- Only run the machine in set-up mode or jog mode.
- Before working at the installed clamping device make sure that starting of the machine is impossible.
6.3.4 Assembly of the workpiece end-stop

Special tools required:
- Allen wrench

1. Put the workpiece end-stop through the assembled clamping head into the clamping device.

NOTE!
Material damage is possible if the mounting screws are tightened too forcefully!

- Tightening the mounting screws too forcefully can damage or destroy them.
- Tighten the mounting screws by hand.
- Do not screw in beyond the resistance.

2. Screw in and firmly tighten mounting screws.

6.4 Function

- Manual loading or automatic pick-up of the workpiece from the main-spindle. Clamping of the workpiece and centric machining.
- Adjust the chuck for the second, eccentric machining process, with the adjustment tool (K), mounted into the machine turret. The pin of the adjustment tool must be moved with the x-axis to dia. see above. The adjustment pin must than engage with the slot (J) on the chuck face. Using the turret force function of the machine CNC-control, the pressure from the adjustment-pin to the SPANNTOP coupling (D) of the chuck assembly (E) should be set to approx. 1.2kN. This pressure will pull the clamping head (L) into the chuck body (G), the work-piece remained in clamped position.
- Actuate the chucking cylinder and push the draw-tube in front end position. There is no pulling force acting now on the chuck, the off-centre adjustment via the C-axis can now be actuated.
- After completing the desired C-axis movement, the chucking cylinder has to be actuated, to move in chuck closed position. The work-piece will be clamped with the set gripping force.
- Disengage the adjustment tool, set in the turret, from the chuck by actuating an Z-axis return.
- The off-centre machining process can now be actuated via the CNC-program.
Upon completion of the off centre machining, move the adjustment tool (K), using the turret force function, (specified pressure on the adjustment tool to the chuck assembly, approx. 1.2kN) into the slot (J) on the face off the chuck assembly (X-axis position of the adjustment tool pin must be at dia. see above). Move the chucking cylinder in chuck open position. By actuating the C-axis, reverse the off-set position of the chuck body into the centric (zero) position.

By actuating an Z-axis return of the adjustment tool now, the work piece gripping will be released, and the work piece can be removed from the chuck. (if a robotic loading / unloading is applied, you need to position your unloading gripper in position to pick-up the work-piece, before the actuation of the Z-axis return of the adjustment tool).

During the opening stroke of the chucking cylinder (draw-tube move in front end position) the chuck body (G) of the chuck assembly (E) will be mechanically aligned to the centric (zero) position.

NOTE!
After each eccentric machining it is necessary to unload the work piece and to reset the chuck into centric (zero) position.

6.5 Applicable spindle speed

- The chuck is balanced in centric position only according to balancing accuracy 4
- Spindle speed for centric work-piece machining approx. 3000 to max. 6000 rpm (depending on the work-piece and concentricity requirement)
- Spindle speed for eccentric work-piece machining up to 5 mm max. 4000 rpm
- Spindle speed for eccentric work-piece machining up to 10 mm max. 2800 rpm
- Spindle speed for eccentric work-piece machining up to 15 mm max. 1500 rpm
- Concentricity accuracy at centric position = 0.02 mm
- The parallel runout between centric and eccentric machined surfaces can reach to an amount of 0.03mm, concerning to max. clamping diameter.

This are approximate spindle speeds only. The max. spindle speed depends on the work-piece contour, work-
6.6 Work piece

WARNING!
Risk of injury due to thrown out parts!
During clamping of the work piece and the processing parts can be thrown and cause severe injuries and property damage.
- Check the clamping diameter of the work piece.
- Tighten only work pieces that meet the dimensional requirements.
- For clamping very long work pieces use in addition a tailstock / a steady rest for support.
- Do not exceed the maximum permissible clamping force.
- Make sure that the applied clamping force is set correctly [neither too high nor too low].

CAUTION
Risk of injury!
When placing the work piece:
- Make sure that the hands / fingers may not be clamped between the flange and the work piece!
6.7 Inspections

NOTE!

Material damage due to damaged clamping devices!

A damaged, incomplete, or unbalanced clamping device can significantly damage or even destroy the machine tool and the work piece.

- Only install undamaged, complete, and precisely balanced clamping devices.
- If in doubt contact the manufacturer.

Ensure the following points prior to each installation and start-up of the clamping device:

- All cylindrical screws of the clamping device must be present and tightened with the proper tightening torque.
- The balance screws of the clamping device must all be present and undamaged.
- All rubber segments must be intact; this means that they are neither torn, nor are they porous at any point.
- All edges and bearing surfaces are intact; this means that they are neither broken nor do they show any signs of wear.
- The set speed of the machine tool should not exceed the maximum permissible speed of the clamping device.
- The maximum draw tube force specified on the perimeter of the clamping device must not be exceeded.
- The clamping pressure of the machine must be sufficiently high.
- All mounting tools must be removed from the interior of the machine.
- Clamping device and work piece must be compatible – check the clamping diameter regularly.
- The work piece must be clamped into the clamping device with sufficient work piece tension.
- Do a pressure loss test and a measurement of clamping force.
6.8 Control of the stroke position

WARNING!

Crushing danger from moving parts!

Crushing danger from moving parts during controlling the stroke position!

Gaps, caused while controlling the stroke position, can cause severe injury.

- Only do the controlling of the stroke position with assembled changing parts.
- Only run the machine in set-up mode or jog mode.
- Do not reach into moving parts or handle moving parts during operation.
- Note the gap dimensions of moving parts.
- Wearing of gloves / [PSA] is required!

6.9 Activities after production is concluded

1. Move the clamping device into unclamped position.
2. Switch off the machine tool and safeguard it from being switched on again.
3. Open the protective door or hood.
4. Clean the clamping device and a possibly mounted adaptation clamping device and adapter of chips and production residues using a soft, lint-free cloth and oil them lightly.
5. Close the protective door or hood.
7 C-Axis movement for Off-Centre Positioning

The following table gives the C-axis angle movement »alpha« for the linear off centre position »e«. The stated values for the angular adjustment are approximate values only.

For adjusting the max. attainable accuracy a correction of the angular rotation of the C-axis during the machining of the first work pieces must occur.

The eccentricity »e« and the adjusting measure of »A« of your eccentric chuck read off the clamping device and/or from the associated drawing.

The given angle »beta« for orientation is the angle, to which the clamping device might be turned [while the adjustment tool is pulled], to bring the axis of the centers of clamping device and eccentricity to vertical alignment.

Do not confound with the given angle »d« for alignment. The clamping device might be turned by the angle »d« after adjusting the eccentricity with pulled adjustment tool to align the axis of the work piece between centric and eccentric center (front sight) in vertical order.

[Diagram showing the angles and components of the eccentric chuck system.]
7.1 Angle movement and adjusting dimension

Depending upon size there are different eccentricities and adjusting measures.

In the following table you can find some examples:

<table>
<thead>
<tr>
<th>Size Clamping device</th>
<th>Document number</th>
<th>Eccentricity</th>
<th>Adjusting dimension A</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>SP.0915.0047.00</td>
<td>5</td>
<td>38,25</td>
</tr>
<tr>
<td>32</td>
<td>SP.0915.0048.00</td>
<td>5</td>
<td>38,25</td>
</tr>
<tr>
<td>32</td>
<td>SP.0915.0050.00</td>
<td>5</td>
<td>38,25</td>
</tr>
<tr>
<td>42</td>
<td>SP.0916.0014.00</td>
<td>10</td>
<td>47,5</td>
</tr>
<tr>
<td>42</td>
<td>SP.0916.0018.01</td>
<td>10</td>
<td>47,5</td>
</tr>
<tr>
<td>42</td>
<td>SP.0916.0016.01</td>
<td>15</td>
<td>48,5</td>
</tr>
<tr>
<td>42</td>
<td>SP.0916.0017.00</td>
<td>15</td>
<td>48,5</td>
</tr>
<tr>
<td>52</td>
<td>SW.SP.0917.0001.00</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>SW.SP.0917.0002.00</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>SW.SP.0917.0003.00</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>SW.SP.0917.0004.00</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>SW.SP.0917.0005.00</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>52</td>
<td>SW.SP.0917.0006.00</td>
<td>15</td>
<td>51</td>
</tr>
<tr>
<td>65</td>
<td>SP.0918.0012.00</td>
<td>15</td>
<td>58,6</td>
</tr>
<tr>
<td>65</td>
<td>SP.0918.0014.01</td>
<td>15</td>
<td>58,6</td>
</tr>
<tr>
<td>65</td>
<td>SP.0918.0015.01</td>
<td>15</td>
<td>58,6</td>
</tr>
<tr>
<td>65</td>
<td>SP.0918.0016.01</td>
<td>15</td>
<td>58,6</td>
</tr>
<tr>
<td>65</td>
<td>SP.0918.0017.01</td>
<td>15</td>
<td>58,6</td>
</tr>
<tr>
<td>65</td>
<td>SW.SP.0918.0003.00</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>SW.SP.0918.0009.00</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>SW.SP.0918.0010.00</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>SW.SP.0918.0011.00</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>SW.SP.0918.0012.00</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>SW.SP.0918.0013.00</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>65</td>
<td>SW.SP.0918.0014.00</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>80</td>
<td>SP.0919.0003.00</td>
<td>15</td>
<td>67,1</td>
</tr>
<tr>
<td>80</td>
<td>SP.0919.0004.00</td>
<td>15</td>
<td>67,1</td>
</tr>
</tbody>
</table>
7.2 Max. eccentricity of 5 mm

7.2.1 C-axis movement at adjusting measure $A=38.25$ mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>3.1</td>
<td>72,986</td>
<td>3,646</td>
<td>55,330</td>
</tr>
<tr>
<td>0,1</td>
<td>2,142</td>
<td>0,150</td>
<td>89,004</td>
<td>3.2</td>
<td>75,898</td>
<td>3,686</td>
<td>53,894</td>
</tr>
<tr>
<td>0,2</td>
<td>4,286</td>
<td>0,299</td>
<td>88,007</td>
<td>3.3</td>
<td>78,884</td>
<td>3,716</td>
<td>52,416</td>
</tr>
<tr>
<td>0,3</td>
<td>6,431</td>
<td>0,449</td>
<td>87,009</td>
<td>3.4</td>
<td>81,950</td>
<td>3,737</td>
<td>50,893</td>
</tr>
<tr>
<td>0,4</td>
<td>8,580</td>
<td>0,597</td>
<td>86,009</td>
<td>3.5</td>
<td>85,107</td>
<td>3,747</td>
<td>49,320</td>
</tr>
<tr>
<td>0,5</td>
<td>10,733</td>
<td>0,745</td>
<td>85,006</td>
<td>3.6</td>
<td>88,364</td>
<td>3,745</td>
<td>47,690</td>
</tr>
<tr>
<td>0,6</td>
<td>12,892</td>
<td>0,892</td>
<td>84,000</td>
<td>3.7</td>
<td>91,732</td>
<td>3,730</td>
<td>45,999</td>
</tr>
<tr>
<td>0,7</td>
<td>15,057</td>
<td>1,038</td>
<td>82,990</td>
<td>3.8</td>
<td>95,226</td>
<td>3,702</td>
<td>44,238</td>
</tr>
<tr>
<td>0,8</td>
<td>17,231</td>
<td>1,183</td>
<td>81,976</td>
<td>3.9</td>
<td>98,863</td>
<td>3,658</td>
<td>42,398</td>
</tr>
<tr>
<td>0,9</td>
<td>19,413</td>
<td>1,326</td>
<td>80,956</td>
<td>4.0</td>
<td>102,663</td>
<td>3,597</td>
<td>40,467</td>
</tr>
<tr>
<td>1</td>
<td>21,606</td>
<td>1,468</td>
<td>79,931</td>
<td>4.1</td>
<td>106,652</td>
<td>3,517</td>
<td>38,433</td>
</tr>
<tr>
<td>1,1</td>
<td>23,811</td>
<td>1,608</td>
<td>78,899</td>
<td>4.2</td>
<td>110,865</td>
<td>3,416</td>
<td>36,275</td>
</tr>
<tr>
<td>1,2</td>
<td>26,028</td>
<td>1,745</td>
<td>77,859</td>
<td>4.3</td>
<td>115,345</td>
<td>3,289</td>
<td>33,972</td>
</tr>
<tr>
<td>1,3</td>
<td>28,259</td>
<td>1,881</td>
<td>76,811</td>
<td>4.4</td>
<td>120,153</td>
<td>3,132</td>
<td>31,490</td>
</tr>
<tr>
<td>1,4</td>
<td>30,507</td>
<td>2,014</td>
<td>75,753</td>
<td>4.5</td>
<td>125,377</td>
<td>2,939</td>
<td>28,781</td>
</tr>
<tr>
<td>1,5</td>
<td>32,771</td>
<td>2,144</td>
<td>74,686</td>
<td>4.6</td>
<td>131,151</td>
<td>2,702</td>
<td>25,775</td>
</tr>
<tr>
<td>1,6</td>
<td>35,055</td>
<td>2,271</td>
<td>73,608</td>
<td>4.7</td>
<td>137,700</td>
<td>2,403</td>
<td>22,351</td>
</tr>
<tr>
<td>1,7</td>
<td>37,358</td>
<td>2,395</td>
<td>72,519</td>
<td>4.8</td>
<td>145,466</td>
<td>2,014</td>
<td>18,274</td>
</tr>
<tr>
<td>1,8</td>
<td>39,684</td>
<td>2,516</td>
<td>71,416</td>
<td>4.9</td>
<td>155,583</td>
<td>1,461</td>
<td>12,939</td>
</tr>
<tr>
<td>1,9</td>
<td>42,034</td>
<td>2,633</td>
<td>70,300</td>
<td>5.0</td>
<td>180,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>2</td>
<td>44,410</td>
<td>2,747</td>
<td>69,169</td>
<td>5.0</td>
<td>180,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
7.3 Max. eccentricity of 6 mm

7.3.1 C-axis movement at adjusting measure A=38.25 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,1</td>
<td>1,760</td>
<td>0,150</td>
<td>89,195</td>
</tr>
<tr>
<td>0,2</td>
<td>3,521</td>
<td>0,299</td>
<td>88,389</td>
</tr>
<tr>
<td>0,3</td>
<td>5,283</td>
<td>0,449</td>
<td>87,583</td>
</tr>
<tr>
<td>0,4</td>
<td>7,047</td>
<td>0,598</td>
<td>86,775</td>
</tr>
<tr>
<td>0,5</td>
<td>8,814</td>
<td>0,746</td>
<td>85,966</td>
</tr>
<tr>
<td>0,6</td>
<td>10,584</td>
<td>0,894</td>
<td>85,155</td>
</tr>
<tr>
<td>0,7</td>
<td>12,358</td>
<td>1,041</td>
<td>84,342</td>
</tr>
<tr>
<td>0,8</td>
<td>14,137</td>
<td>1,188</td>
<td>83,525</td>
</tr>
<tr>
<td>0,9</td>
<td>15,921</td>
<td>1,333</td>
<td>82,706</td>
</tr>
<tr>
<td>1</td>
<td>17,711</td>
<td>1,477</td>
<td>81,883</td>
</tr>
<tr>
<td>1,1</td>
<td>19,508</td>
<td>1,620</td>
<td>81,056</td>
</tr>
<tr>
<td>1,2</td>
<td>21,312</td>
<td>1,761</td>
<td>80,225</td>
</tr>
<tr>
<td>1,3</td>
<td>23,125</td>
<td>1,901</td>
<td>79,388</td>
</tr>
<tr>
<td>1,4</td>
<td>24,947</td>
<td>2,040</td>
<td>78,546</td>
</tr>
<tr>
<td>1,5</td>
<td>26,779</td>
<td>2,176</td>
<td>77,699</td>
</tr>
<tr>
<td>1,6</td>
<td>28,621</td>
<td>2,311</td>
<td>76,845</td>
</tr>
<tr>
<td>1,7</td>
<td>30,476</td>
<td>2,443</td>
<td>75,984</td>
</tr>
<tr>
<td>1,8</td>
<td>32,342</td>
<td>2,573</td>
<td>75,115</td>
</tr>
<tr>
<td>1,9</td>
<td>34,222</td>
<td>2,701</td>
<td>74,239</td>
</tr>
<tr>
<td>2</td>
<td>36,117</td>
<td>2,826</td>
<td>73,354</td>
</tr>
<tr>
<td>2,1</td>
<td>38,027</td>
<td>2,948</td>
<td>72,461</td>
</tr>
<tr>
<td>2,2</td>
<td>39,953</td>
<td>3,067</td>
<td>71,557</td>
</tr>
<tr>
<td>2,3</td>
<td>41,897</td>
<td>3,184</td>
<td>70,643</td>
</tr>
<tr>
<td>2,4</td>
<td>43,860</td>
<td>3,297</td>
<td>69,719</td>
</tr>
<tr>
<td>2,5</td>
<td>45,842</td>
<td>3,406</td>
<td>68,782</td>
</tr>
<tr>
<td>2,6</td>
<td>47,846</td>
<td>3,512</td>
<td>67,833</td>
</tr>
<tr>
<td>2,7</td>
<td>49,873</td>
<td>3,614</td>
<td>66,870</td>
</tr>
<tr>
<td>2,8</td>
<td>51,924</td>
<td>3,712</td>
<td>65,894</td>
</tr>
<tr>
<td>2,9</td>
<td>54,001</td>
<td>3,806</td>
<td>64,902</td>
</tr>
<tr>
<td>3</td>
<td>56,105</td>
<td>3,895</td>
<td>63,895</td>
</tr>
</tbody>
</table>

Order Hotline +49 7144.907-333
7.4 Max. eccentricity of 10 mm

7.4.1 C-axis movement at adjusting measure A=47.0 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,1</td>
<td>1,025</td>
<td>0,121</td>
<td>89,548</td>
<td>0,2</td>
<td>2,051</td>
<td>0,241</td>
<td>89,095</td>
</tr>
<tr>
<td>0,1</td>
<td>0,121</td>
<td>89,548</td>
<td>0,241</td>
<td>0,3</td>
<td>3,077</td>
<td>0,362</td>
<td>88,643</td>
<td>0,5</td>
<td>5,130</td>
<td>0,602</td>
<td>87,736</td>
</tr>
<tr>
<td>0,2</td>
<td>2,051</td>
<td>0,362</td>
<td>88,643</td>
<td>0,8</td>
<td>8,215</td>
<td>0,962</td>
<td>86,828</td>
<td>0,9</td>
<td>9,246</td>
<td>1,081</td>
<td>85,918</td>
</tr>
<tr>
<td>0,3</td>
<td>3,077</td>
<td>0,482</td>
<td>88,190</td>
<td>0,5</td>
<td>5,130</td>
<td>0,602</td>
<td>87,736</td>
<td>0,1</td>
<td>1,025</td>
<td>0,121</td>
<td>89,548</td>
</tr>
<tr>
<td>0,4</td>
<td>4,103</td>
<td>0,482</td>
<td>88,190</td>
<td>0,6</td>
<td>6,157</td>
<td>0,722</td>
<td>87,283</td>
<td>0,7</td>
<td>7,186</td>
<td>0,842</td>
<td>86,828</td>
</tr>
<tr>
<td>0,5</td>
<td>5,130</td>
<td>0,602</td>
<td>87,736</td>
<td>0,8</td>
<td>8,215</td>
<td>0,962</td>
<td>86,373</td>
<td>0,9</td>
<td>9,246</td>
<td>1,081</td>
<td>85,918</td>
</tr>
<tr>
<td>0,6</td>
<td>6,157</td>
<td>0,722</td>
<td>87,283</td>
<td>1</td>
<td>10,278</td>
<td>1,200</td>
<td>85,461</td>
<td>1,1</td>
<td>11,312</td>
<td>1,319</td>
<td>85,004</td>
</tr>
<tr>
<td>0,7</td>
<td>7,186</td>
<td>0,842</td>
<td>86,828</td>
<td>1,2</td>
<td>12,347</td>
<td>1,437</td>
<td>84,545</td>
<td>1,3</td>
<td>13,384</td>
<td>1,555</td>
<td>84,085</td>
</tr>
<tr>
<td>0,8</td>
<td>8,215</td>
<td>0,962</td>
<td>86,373</td>
<td>1,4</td>
<td>14,423</td>
<td>1,672</td>
<td>83,624</td>
<td>1,5</td>
<td>15,465</td>
<td>1,789</td>
<td>83,162</td>
</tr>
<tr>
<td>0,9</td>
<td>9,246</td>
<td>1,081</td>
<td>85,918</td>
<td>1,6</td>
<td>16,508</td>
<td>1,905</td>
<td>82,699</td>
<td>1,7</td>
<td>17,554</td>
<td>2,021</td>
<td>82,233</td>
</tr>
<tr>
<td>1</td>
<td>10,278</td>
<td>1,200</td>
<td>85,461</td>
<td>1,8</td>
<td>18,603</td>
<td>2,136</td>
<td>81,766</td>
<td>1,9</td>
<td>19,655</td>
<td>2,251</td>
<td>81,298</td>
</tr>
<tr>
<td>1,1</td>
<td>11,312</td>
<td>1,319</td>
<td>85,004</td>
<td>2</td>
<td>20,710</td>
<td>2,364</td>
<td>80,827</td>
<td>2,1</td>
<td>21,767</td>
<td>2,477</td>
<td>80,355</td>
</tr>
<tr>
<td>1,2</td>
<td>12,347</td>
<td>1,437</td>
<td>84,545</td>
<td>2,2</td>
<td>22,829</td>
<td>2,590</td>
<td>79,881</td>
<td>2,3</td>
<td>23,893</td>
<td>2,701</td>
<td>79,404</td>
</tr>
<tr>
<td>1,3</td>
<td>13,384</td>
<td>1,555</td>
<td>84,085</td>
<td>2,4</td>
<td>24,962</td>
<td>2,811</td>
<td>78,925</td>
<td>2,5</td>
<td>26,034</td>
<td>2,921</td>
<td>78,444</td>
</tr>
<tr>
<td>1,4</td>
<td>14,423</td>
<td>1,672</td>
<td>83,624</td>
<td>2,6</td>
<td>27,110</td>
<td>3,034</td>
<td>77,960</td>
<td>2,7</td>
<td>28,191</td>
<td>3,137</td>
<td>77,473</td>
</tr>
<tr>
<td>1,5</td>
<td>15,465</td>
<td>1,789</td>
<td>83,162</td>
<td>2,8</td>
<td>29,276</td>
<td>3,244</td>
<td>76,984</td>
<td>2,9</td>
<td>30,366</td>
<td>3,350</td>
<td>76,492</td>
</tr>
<tr>
<td>1,6</td>
<td>16,508</td>
<td>1,905</td>
<td>82,699</td>
<td>3</td>
<td>31,461</td>
<td>3,454</td>
<td>75,996</td>
<td>3,1</td>
<td>32,561</td>
<td>3,557</td>
<td>75,498</td>
</tr>
<tr>
<td>1,7</td>
<td>17,554</td>
<td>2,021</td>
<td>82,233</td>
<td>3,2</td>
<td>33,666</td>
<td>3,659</td>
<td>74,997</td>
<td>3,3</td>
<td>34,777</td>
<td>3,760</td>
<td>74,491</td>
</tr>
<tr>
<td>1,8</td>
<td>18,603</td>
<td>2,136</td>
<td>81,766</td>
<td>3,4</td>
<td>35,894</td>
<td>3,860</td>
<td>73,983</td>
<td>3,5</td>
<td>37,017</td>
<td>3,958</td>
<td>73,471</td>
</tr>
<tr>
<td>1,9</td>
<td>19,655</td>
<td>2,251</td>
<td>81,298</td>
<td>3,6</td>
<td>38,146</td>
<td>4,055</td>
<td>72,954</td>
<td>3,7</td>
<td>39,281</td>
<td>4,150</td>
<td>72,434</td>
</tr>
<tr>
<td>2</td>
<td>20,710</td>
<td>2,364</td>
<td>80,827</td>
<td>3,8</td>
<td>40,424</td>
<td>4,244</td>
<td>71,910</td>
<td>3,9</td>
<td>41,573</td>
<td>4,336</td>
<td>71,381</td>
</tr>
<tr>
<td>2,1</td>
<td>21,767</td>
<td>2,477</td>
<td>80,355</td>
<td>4</td>
<td>42,730</td>
<td>4,427</td>
<td>70,848</td>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
</tbody>
</table>
7.5 Max. eccentricity of 15 mm

7.5.1 C-axis movement at adjusting measure A=48.5 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>1.1</td>
<td>7.115</td>
<td>1.296</td>
<td>87.091</td>
<td>1.2</td>
<td>7.764</td>
<td>1.413</td>
<td>86.825</td>
</tr>
<tr>
<td>0.1</td>
<td>0.646</td>
<td>0.118</td>
<td>89.736</td>
<td>1.3</td>
<td>8.414</td>
<td>1.530</td>
<td>86.558</td>
<td>1.4</td>
<td>9.064</td>
<td>1.647</td>
<td>86.292</td>
</tr>
<tr>
<td>0.2</td>
<td>1.292</td>
<td>0.236</td>
<td>89.472</td>
<td>1.5</td>
<td>9.715</td>
<td>1.763</td>
<td>86.024</td>
<td>1.6</td>
<td>10.367</td>
<td>1.880</td>
<td>85.757</td>
</tr>
<tr>
<td>0.3</td>
<td>1.938</td>
<td>0.354</td>
<td>89.208</td>
<td>1.7</td>
<td>11.019</td>
<td>1.996</td>
<td>85.488</td>
<td>1.8</td>
<td>11.673</td>
<td>2.112</td>
<td>85.219</td>
</tr>
<tr>
<td>0.4</td>
<td>2.584</td>
<td>0.472</td>
<td>88.944</td>
<td>1.9</td>
<td>12.327</td>
<td>2.227</td>
<td>84.950</td>
<td>2</td>
<td>12.982</td>
<td>2.342</td>
<td>84.680</td>
</tr>
<tr>
<td>0.5</td>
<td>3.230</td>
<td>0.590</td>
<td>88.680</td>
<td>2.1</td>
<td>13.639</td>
<td>2.457</td>
<td>84.409</td>
<td>2.2</td>
<td>14.296</td>
<td>2.572</td>
<td>84.138</td>
</tr>
<tr>
<td>0.6</td>
<td>3.877</td>
<td>0.708</td>
<td>88.416</td>
<td>2.3</td>
<td>14.954</td>
<td>2.686</td>
<td>83.866</td>
<td>2.4</td>
<td>15.614</td>
<td>2.800</td>
<td>83.593</td>
</tr>
<tr>
<td>0.7</td>
<td>4.523</td>
<td>0.826</td>
<td>88.151</td>
<td>2.5</td>
<td>16.275</td>
<td>2.913</td>
<td>83.319</td>
<td>2.6</td>
<td>16.937</td>
<td>3.026</td>
<td>83.045</td>
</tr>
<tr>
<td>0.8</td>
<td>5.171</td>
<td>0.944</td>
<td>87.887</td>
<td>2.7</td>
<td>17.612</td>
<td>3.139</td>
<td>82.769</td>
<td>2.8</td>
<td>18.265</td>
<td>3.251</td>
<td>82.493</td>
</tr>
<tr>
<td>0.9</td>
<td>5.818</td>
<td>1.061</td>
<td>87.622</td>
<td>2.9</td>
<td>18.932</td>
<td>3.363</td>
<td>82.216</td>
<td>3</td>
<td>19.599</td>
<td>3.475</td>
<td>81.938</td>
</tr>
<tr>
<td>1</td>
<td>6.466</td>
<td>1.179</td>
<td>87.356</td>
<td>3.1</td>
<td>20.269</td>
<td>3.585</td>
<td>81.658</td>
<td>3.2</td>
<td>20.940</td>
<td>3.696</td>
<td>81.378</td>
</tr>
<tr>
<td>1.1</td>
<td>7.115</td>
<td>1.296</td>
<td>87.091</td>
<td>3.3</td>
<td>21.612</td>
<td>3.806</td>
<td>81.097</td>
<td>3.4</td>
<td>22.287</td>
<td>3.915</td>
<td>80.814</td>
</tr>
<tr>
<td>1.2</td>
<td>7.764</td>
<td>1.413</td>
<td>86.825</td>
<td>3.5</td>
<td>22.963</td>
<td>4.024</td>
<td>80.531</td>
<td>3.6</td>
<td>23.641</td>
<td>4.132</td>
<td>80.246</td>
</tr>
<tr>
<td>1.3</td>
<td>8.414</td>
<td>1.530</td>
<td>86.558</td>
<td>3.7</td>
<td>24.321</td>
<td>4.240</td>
<td>79.959</td>
<td>3.8</td>
<td>25.003</td>
<td>4.347</td>
<td>79.672</td>
</tr>
<tr>
<td>1.5</td>
<td>9.715</td>
<td>1.763</td>
<td>86.024</td>
<td>4.1</td>
<td>27.061</td>
<td>4.664</td>
<td>78.802</td>
<td>4.2</td>
<td>27.752</td>
<td>4.769</td>
<td>78.509</td>
</tr>
<tr>
<td>1.6</td>
<td>10.367</td>
<td>1.880</td>
<td>85.757</td>
<td>4.3</td>
<td>28.444</td>
<td>4.873</td>
<td>78.214</td>
<td>4.4</td>
<td>29.140</td>
<td>4.976</td>
<td>77.918</td>
</tr>
<tr>
<td>1.7</td>
<td>11.019</td>
<td>1.996</td>
<td>85.488</td>
<td>4.5</td>
<td>29.837</td>
<td>5.078</td>
<td>77.620</td>
<td>4.6</td>
<td>30.537</td>
<td>5.179</td>
<td>77.321</td>
</tr>
<tr>
<td>1.8</td>
<td>11.673</td>
<td>2.112</td>
<td>85.219</td>
<td>4.7</td>
<td>31.240</td>
<td>5.280</td>
<td>77.020</td>
<td>4.8</td>
<td>31.946</td>
<td>5.380</td>
<td>76.717</td>
</tr>
<tr>
<td>1.9</td>
<td>12.327</td>
<td>2.227</td>
<td>84.950</td>
<td>4.9</td>
<td>32.654</td>
<td>5.479</td>
<td>76.413</td>
<td>5</td>
<td>33.365</td>
<td>5.578</td>
<td>76.107</td>
</tr>
</tbody>
</table>

Order Hotline +49 7144.907-333
7.5.2 C-axis movement at adjusting measure A=49.0 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
<td>0,1</td>
<td>0,647</td>
<td>0,117</td>
<td>89,735</td>
<td>0,2</td>
<td>1,294</td>
<td>0,234</td>
<td>89,470</td>
</tr>
<tr>
<td></td>
<td>0,3</td>
<td>1,941</td>
<td>0,351</td>
<td>0,4</td>
<td>2,589</td>
<td>0,468</td>
<td>88,939</td>
<td>0,5</td>
<td>3,236</td>
<td>0,584</td>
<td>88,674</td>
</tr>
<tr>
<td></td>
<td>0,7</td>
<td>3,884</td>
<td>0,701</td>
<td>0,8</td>
<td>4,532</td>
<td>0,818</td>
<td>88,143</td>
<td>1</td>
<td>5,180</td>
<td>0,934</td>
<td>87,877</td>
</tr>
<tr>
<td></td>
<td>1,1</td>
<td>4,829</td>
<td>1,151</td>
<td>1,2</td>
<td>5,778</td>
<td>1,399</td>
<td>86,810</td>
<td>1,3</td>
<td>6,475</td>
<td>1,677</td>
<td>87,344</td>
</tr>
<tr>
<td></td>
<td>1,6</td>
<td>7,836</td>
<td>1,861</td>
<td>1,7</td>
<td>8,165</td>
<td>2,210</td>
<td>85,646</td>
<td>1,8</td>
<td>8,854</td>
<td>2,518</td>
<td>85,237</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>9,733</td>
<td>2,745</td>
<td>2,1</td>
<td>10,126</td>
<td>3,025</td>
<td>84,824</td>
<td>2,2</td>
<td>10,941</td>
<td>3,370</td>
<td>84,413</td>
</tr>
<tr>
<td></td>
<td>2,5</td>
<td>11,755</td>
<td>3,660</td>
<td>2,4</td>
<td>12,500</td>
<td>4,020</td>
<td>83,912</td>
<td>2,6</td>
<td>13,568</td>
<td>4,600</td>
<td>83,508</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>14,600</td>
<td>5,330</td>
<td>2,8</td>
<td>15,643</td>
<td>5,490</td>
<td>83,097</td>
<td>2,9</td>
<td>16,698</td>
<td>6,120</td>
<td>82,697</td>
</tr>
<tr>
<td></td>
<td>3,5</td>
<td>17,510</td>
<td>6,720</td>
<td>3,1</td>
<td>18,563</td>
<td>6,990</td>
<td>82,297</td>
<td>3,2</td>
<td>19,618</td>
<td>7,660</td>
<td>81,897</td>
</tr>
<tr>
<td></td>
<td>3,7</td>
<td>20,510</td>
<td>8,230</td>
<td>3,4</td>
<td>21,473</td>
<td>8,900</td>
<td>81,497</td>
<td>3,6</td>
<td>22,428</td>
<td>9,570</td>
<td>81,097</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>23,373</td>
<td>10,200</td>
<td>3,8</td>
<td>24,323</td>
<td>10,840</td>
<td>80,699</td>
<td>4,1</td>
<td>25,278</td>
<td>11,510</td>
<td>80,299</td>
</tr>
<tr>
<td></td>
<td>4,5</td>
<td>26,228</td>
<td>12,700</td>
<td>4,3</td>
<td>27,183</td>
<td>13,380</td>
<td>79,901</td>
<td>4,6</td>
<td>28,138</td>
<td>14,050</td>
<td>79,503</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>29,088</td>
<td>15,400</td>
<td>4,9</td>
<td>30,043</td>
<td>15,730</td>
<td>79,109</td>
<td>5</td>
<td>31,003</td>
<td>16,380</td>
<td>78,715</td>
</tr>
</tbody>
</table>
7.5.3 C-axis movement at adjusting measure A=51.0 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.652</td>
<td>0.112</td>
<td>89.730</td>
</tr>
<tr>
<td>0.2</td>
<td>1.303</td>
<td>0.225</td>
<td>89.461</td>
</tr>
<tr>
<td>0.3</td>
<td>1.955</td>
<td>0.337</td>
<td>89.191</td>
</tr>
<tr>
<td>0.4</td>
<td>2.607</td>
<td>0.449</td>
<td>88.921</td>
</tr>
<tr>
<td>0.5</td>
<td>3.259</td>
<td>0.561</td>
<td>88.651</td>
</tr>
<tr>
<td>0.6</td>
<td>3.911</td>
<td>0.674</td>
<td>88.381</td>
</tr>
<tr>
<td>0.7</td>
<td>4.564</td>
<td>0.786</td>
<td>88.111</td>
</tr>
<tr>
<td>0.8</td>
<td>5.217</td>
<td>0.898</td>
<td>87.840</td>
</tr>
<tr>
<td>0.9</td>
<td>5.870</td>
<td>1.000</td>
<td>87.570</td>
</tr>
<tr>
<td>1</td>
<td>6.524</td>
<td>1.121</td>
<td>87.298</td>
</tr>
<tr>
<td>1.1</td>
<td>7.178</td>
<td>1.333</td>
<td>87.027</td>
</tr>
<tr>
<td>1.2</td>
<td>7.833</td>
<td>1.444</td>
<td>86.755</td>
</tr>
<tr>
<td>1.3</td>
<td>8.489</td>
<td>1.555</td>
<td>86.483</td>
</tr>
<tr>
<td>1.4</td>
<td>9.145</td>
<td>1.666</td>
<td>86.211</td>
</tr>
<tr>
<td>1.5</td>
<td>9.801</td>
<td>1.777</td>
<td>85.938</td>
</tr>
<tr>
<td>1.6</td>
<td>10.459</td>
<td>1.888</td>
<td>85.664</td>
</tr>
<tr>
<td>1.7</td>
<td>11.117</td>
<td>1.999</td>
<td>85.390</td>
</tr>
<tr>
<td>1.8</td>
<td>11.776</td>
<td>2.110</td>
<td>85.116</td>
</tr>
<tr>
<td>1.9</td>
<td>12.436</td>
<td>2.221</td>
<td>84.841</td>
</tr>
<tr>
<td>2</td>
<td>13.097</td>
<td>2.332</td>
<td>84.565</td>
</tr>
<tr>
<td>2.1</td>
<td>13.759</td>
<td>2.443</td>
<td>84.289</td>
</tr>
<tr>
<td>2.2</td>
<td>14.422</td>
<td>2.554</td>
<td>84.012</td>
</tr>
<tr>
<td>2.3</td>
<td>15.086</td>
<td>2.665</td>
<td>83.734</td>
</tr>
<tr>
<td>2.4</td>
<td>15.751</td>
<td>2.776</td>
<td>83.456</td>
</tr>
<tr>
<td>2.5</td>
<td>16.418</td>
<td>2.887</td>
<td>83.176</td>
</tr>
<tr>
<td>2.6</td>
<td>17.085</td>
<td>2.998</td>
<td>82.896</td>
</tr>
<tr>
<td>2.7</td>
<td>17.754</td>
<td>3.109</td>
<td>82.615</td>
</tr>
<tr>
<td>2.8</td>
<td>18.425</td>
<td>3.220</td>
<td>82.334</td>
</tr>
<tr>
<td>2.9</td>
<td>19.097</td>
<td>3.331</td>
<td>82.051</td>
</tr>
<tr>
<td>3</td>
<td>19.770</td>
<td>3.442</td>
<td>81.767</td>
</tr>
<tr>
<td>3.1</td>
<td>20.445</td>
<td>3.553</td>
<td>81.482</td>
</tr>
<tr>
<td>3.2</td>
<td>21.121</td>
<td>3.664</td>
<td>81.197</td>
</tr>
<tr>
<td>3.3</td>
<td>21.799</td>
<td>3.775</td>
<td>80.910</td>
</tr>
<tr>
<td>3.4</td>
<td>22.479</td>
<td>3.886</td>
<td>80.622</td>
</tr>
<tr>
<td>3.5</td>
<td>23.160</td>
<td>3.997</td>
<td>80.333</td>
</tr>
<tr>
<td>3.6</td>
<td>23.844</td>
<td>4.108</td>
<td>80.043</td>
</tr>
<tr>
<td>3.7</td>
<td>24.529</td>
<td>4.219</td>
<td>79.751</td>
</tr>
<tr>
<td>3.8</td>
<td>25.216</td>
<td>4.330</td>
<td>79.459</td>
</tr>
<tr>
<td>3.9</td>
<td>25.906</td>
<td>4.441</td>
<td>79.165</td>
</tr>
<tr>
<td>4</td>
<td>26.597</td>
<td>4.552</td>
<td>78.876</td>
</tr>
<tr>
<td>4.1</td>
<td>27.290</td>
<td>4.664</td>
<td>78.572</td>
</tr>
<tr>
<td>4.2</td>
<td>27.986</td>
<td>4.776</td>
<td>78.274</td>
</tr>
<tr>
<td>4.3</td>
<td>28.684</td>
<td>4.888</td>
<td>77.975</td>
</tr>
<tr>
<td>4.4</td>
<td>29.384</td>
<td>4.999</td>
<td>77.673</td>
</tr>
<tr>
<td>4.5</td>
<td>30.087</td>
<td>5.110</td>
<td>77.371</td>
</tr>
<tr>
<td>4.6</td>
<td>30.792</td>
<td>5.221</td>
<td>77.068</td>
</tr>
<tr>
<td>4.7</td>
<td>31.500</td>
<td>5.332</td>
<td>76.764</td>
</tr>
<tr>
<td>4.8</td>
<td>32.210</td>
<td>5.443</td>
<td>76.460</td>
</tr>
<tr>
<td>4.9</td>
<td>32.923</td>
<td>5.554</td>
<td>76.156</td>
</tr>
<tr>
<td>5</td>
<td>33.639</td>
<td>5.665</td>
<td>75.852</td>
</tr>
</tbody>
</table>
7.5.4 C-axis movement at adjusting measure A=58.6 mm

<table>
<thead>
<tr>
<th>alpha</th>
<th>beta</th>
<th>delta</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
</tr>
<tr>
<td>0.1</td>
<td>0.666</td>
<td>0.098</td>
</tr>
<tr>
<td>0.2</td>
<td>1.332</td>
<td>0.196</td>
</tr>
<tr>
<td>0.3</td>
<td>1.999</td>
<td>0.293</td>
</tr>
<tr>
<td>0.4</td>
<td>2.665</td>
<td>0.391</td>
</tr>
<tr>
<td>0.5</td>
<td>3.332</td>
<td>0.489</td>
</tr>
<tr>
<td>0.6</td>
<td>3.999</td>
<td>0.586</td>
</tr>
<tr>
<td>0.7</td>
<td>4.666</td>
<td>0.684</td>
</tr>
<tr>
<td>0.8</td>
<td>5.333</td>
<td>0.781</td>
</tr>
<tr>
<td>0.9</td>
<td>6.001</td>
<td>0.878</td>
</tr>
<tr>
<td>1</td>
<td>6.669</td>
<td>0.976</td>
</tr>
<tr>
<td>1.1</td>
<td>7.338</td>
<td>1.073</td>
</tr>
<tr>
<td>1.2</td>
<td>8.008</td>
<td>1.170</td>
</tr>
<tr>
<td>1.3</td>
<td>8.677</td>
<td>1.266</td>
</tr>
<tr>
<td>1.4</td>
<td>9.348</td>
<td>1.363</td>
</tr>
<tr>
<td>1.5</td>
<td>10.019</td>
<td>1.459</td>
</tr>
<tr>
<td>1.6</td>
<td>10.691</td>
<td>1.556</td>
</tr>
<tr>
<td>1.7</td>
<td>11.363</td>
<td>1.652</td>
</tr>
<tr>
<td>1.8</td>
<td>12.037</td>
<td>1.747</td>
</tr>
<tr>
<td>1.9</td>
<td>12.711</td>
<td>1.843</td>
</tr>
<tr>
<td>2</td>
<td>13.386</td>
<td>1.938</td>
</tr>
<tr>
<td>2.1</td>
<td>14.062</td>
<td>2.033</td>
</tr>
<tr>
<td>2.2</td>
<td>14.739</td>
<td>2.128</td>
</tr>
<tr>
<td>2.3</td>
<td>15.418</td>
<td>2.223</td>
</tr>
<tr>
<td>2.4</td>
<td>16.097</td>
<td>2.317</td>
</tr>
<tr>
<td>2.5</td>
<td>16.777</td>
<td>2.411</td>
</tr>
<tr>
<td>2.6</td>
<td>17.459</td>
<td>2.504</td>
</tr>
<tr>
<td>2.7</td>
<td>18.142</td>
<td>2.598</td>
</tr>
<tr>
<td>2.8</td>
<td>18.826</td>
<td>2.691</td>
</tr>
<tr>
<td>2.9</td>
<td>19.512</td>
<td>2.783</td>
</tr>
<tr>
<td>3</td>
<td>20.199</td>
<td>2.875</td>
</tr>
<tr>
<td>3.1</td>
<td>20.887</td>
<td>2.967</td>
</tr>
<tr>
<td>3.2</td>
<td>21.577</td>
<td>3.058</td>
</tr>
<tr>
<td>3.3</td>
<td>22.266</td>
<td>3.149</td>
</tr>
<tr>
<td>3.4</td>
<td>22.962</td>
<td>3.240</td>
</tr>
<tr>
<td>3.5</td>
<td>23.657</td>
<td>3.330</td>
</tr>
<tr>
<td>3.6</td>
<td>24.354</td>
<td>3.419</td>
</tr>
<tr>
<td>3.7</td>
<td>25.053</td>
<td>3.508</td>
</tr>
<tr>
<td>3.8</td>
<td>25.753</td>
<td>3.597</td>
</tr>
<tr>
<td>3.9</td>
<td>26.456</td>
<td>3.685</td>
</tr>
<tr>
<td>4</td>
<td>27.160</td>
<td>3.772</td>
</tr>
<tr>
<td>4.1</td>
<td>27.866</td>
<td>3.859</td>
</tr>
<tr>
<td>4.2</td>
<td>28.575</td>
<td>3.945</td>
</tr>
<tr>
<td>4.3</td>
<td>29.291</td>
<td>4.031</td>
</tr>
<tr>
<td>4.4</td>
<td>29.999</td>
<td>4.116</td>
</tr>
<tr>
<td>4.5</td>
<td>30.714</td>
<td>4.201</td>
</tr>
<tr>
<td>4.6</td>
<td>31.423</td>
<td>4.285</td>
</tr>
<tr>
<td>4.7</td>
<td>32.152</td>
<td>4.368</td>
</tr>
<tr>
<td>4.8</td>
<td>32.875</td>
<td>4.451</td>
</tr>
<tr>
<td>4.9</td>
<td>33.600</td>
<td>4.533</td>
</tr>
<tr>
<td>5</td>
<td>34.328</td>
<td>4.614</td>
</tr>
</tbody>
</table>

Order Hotline +49 7144.907-333
7.5.5 C-axis movement at adjusting measure A=60.0 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0,000</td>
<td>0,000</td>
<td>0,000</td>
</tr>
<tr>
<td>0,1</td>
<td>0,668</td>
<td>0,095</td>
<td>89,714</td>
</tr>
<tr>
<td>0,2</td>
<td>1,337</td>
<td>0,191</td>
<td>89,427</td>
</tr>
<tr>
<td>0,3</td>
<td>2,006</td>
<td>0,286</td>
<td>89,140</td>
</tr>
<tr>
<td>0,4</td>
<td>2,674</td>
<td>0,382</td>
<td>88,854</td>
</tr>
<tr>
<td>0,5</td>
<td>3,343</td>
<td>0,477</td>
<td>88,567</td>
</tr>
<tr>
<td>0,6</td>
<td>4,012</td>
<td>0,573</td>
<td>88,280</td>
</tr>
<tr>
<td>0,7</td>
<td>4,682</td>
<td>0,668</td>
<td>87,993</td>
</tr>
<tr>
<td>0,8</td>
<td>5,352</td>
<td>0,763</td>
<td>87,706</td>
</tr>
<tr>
<td>0,9</td>
<td>6,022</td>
<td>0,858</td>
<td>87,418</td>
</tr>
<tr>
<td>1</td>
<td>6,692</td>
<td>0,953</td>
<td>87,130</td>
</tr>
<tr>
<td>1,1</td>
<td>7,363</td>
<td>1,048</td>
<td>86,842</td>
</tr>
<tr>
<td>1,2</td>
<td>8,035</td>
<td>1,142</td>
<td>86,554</td>
</tr>
<tr>
<td>1,3</td>
<td>8,707</td>
<td>1,237</td>
<td>86,265</td>
</tr>
<tr>
<td>1,4</td>
<td>9,380</td>
<td>1,331</td>
<td>85,976</td>
</tr>
<tr>
<td>1,5</td>
<td>10,053</td>
<td>1,425</td>
<td>85,686</td>
</tr>
<tr>
<td>1,6</td>
<td>10,727</td>
<td>1,519</td>
<td>85,396</td>
</tr>
<tr>
<td>1,7</td>
<td>11,402</td>
<td>1,613</td>
<td>85,106</td>
</tr>
<tr>
<td>1,8</td>
<td>12,078</td>
<td>1,707</td>
<td>84,815</td>
</tr>
<tr>
<td>1,9</td>
<td>12,754</td>
<td>1,800</td>
<td>84,523</td>
</tr>
<tr>
<td>2</td>
<td>13,431</td>
<td>1,893</td>
<td>84,231</td>
</tr>
<tr>
<td>2,1</td>
<td>14,110</td>
<td>1,986</td>
<td>83,938</td>
</tr>
<tr>
<td>2,2</td>
<td>14,789</td>
<td>2,079</td>
<td>83,645</td>
</tr>
<tr>
<td>2,3</td>
<td>15,469</td>
<td>2,171</td>
<td>83,351</td>
</tr>
<tr>
<td>2,4</td>
<td>16,151</td>
<td>2,263</td>
<td>83,056</td>
</tr>
<tr>
<td>2,5</td>
<td>16,834</td>
<td>2,355</td>
<td>82,761</td>
</tr>
<tr>
<td>2,6</td>
<td>17,517</td>
<td>2,446</td>
<td>82,464</td>
</tr>
<tr>
<td>2,7</td>
<td>18,202</td>
<td>2,537</td>
<td>82,167</td>
</tr>
<tr>
<td>2,8</td>
<td>18,889</td>
<td>2,628</td>
<td>81,869</td>
</tr>
<tr>
<td>2,9</td>
<td>19,577</td>
<td>2,718</td>
<td>81,571</td>
</tr>
<tr>
<td>3</td>
<td>20,266</td>
<td>2,808</td>
<td>81,271</td>
</tr>
<tr>
<td>3,1</td>
<td>20,957</td>
<td>2,898</td>
<td>80,971</td>
</tr>
<tr>
<td>3,2</td>
<td>21,649</td>
<td>2,987</td>
<td>80,669</td>
</tr>
<tr>
<td>3,3</td>
<td>22,343</td>
<td>3,076</td>
<td>80,367</td>
</tr>
<tr>
<td>3,4</td>
<td>23,038</td>
<td>3,164</td>
<td>80,063</td>
</tr>
<tr>
<td>3,5</td>
<td>23,735</td>
<td>3,252</td>
<td>79,758</td>
</tr>
<tr>
<td>3,6</td>
<td>24,434</td>
<td>3,339</td>
<td>79,453</td>
</tr>
<tr>
<td>3,7</td>
<td>25,135</td>
<td>3,426</td>
<td>79,146</td>
</tr>
<tr>
<td>3,8</td>
<td>25,837</td>
<td>3,513</td>
<td>78,838</td>
</tr>
<tr>
<td>3,9</td>
<td>26,542</td>
<td>3,599</td>
<td>78,528</td>
</tr>
<tr>
<td>4</td>
<td>27,248</td>
<td>3,684</td>
<td>78,218</td>
</tr>
<tr>
<td>4,1</td>
<td>27,957</td>
<td>3,769</td>
<td>77,906</td>
</tr>
<tr>
<td>4,2</td>
<td>28,667</td>
<td>3,853</td>
<td>77,593</td>
</tr>
<tr>
<td>4,3</td>
<td>29,380</td>
<td>3,937</td>
<td>77,278</td>
</tr>
<tr>
<td>4,4</td>
<td>30,095</td>
<td>4,020</td>
<td>76,963</td>
</tr>
<tr>
<td>4,5</td>
<td>30,812</td>
<td>4,103</td>
<td>76,645</td>
</tr>
<tr>
<td>4,6</td>
<td>31,532</td>
<td>4,185</td>
<td>76,326</td>
</tr>
<tr>
<td>4,7</td>
<td>32,254</td>
<td>4,266</td>
<td>76,006</td>
</tr>
<tr>
<td>4,8</td>
<td>32,979</td>
<td>4,347</td>
<td>75,684</td>
</tr>
<tr>
<td>4,9</td>
<td>33,706</td>
<td>4,427</td>
<td>75,360</td>
</tr>
<tr>
<td>5</td>
<td>34,436</td>
<td>4,506</td>
<td>75,035</td>
</tr>
</tbody>
</table>

Order Hotline +49 7144.907-333

English
7.5.6 C-axis movement at adjusting measure A=67.1 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.1</td>
<td>0.679</td>
<td>0.085</td>
<td>89.703</td>
<td>0.2</td>
<td>1.357</td>
<td>0.171</td>
<td>89.407</td>
</tr>
<tr>
<td>0.3</td>
<td>2.036</td>
<td>0.256</td>
<td>89.110</td>
<td>0.4</td>
<td>2.715</td>
<td>0.341</td>
<td>88.813</td>
<td>0.5</td>
<td>3.394</td>
<td>0.427</td>
<td>88.516</td>
</tr>
<tr>
<td>0.6</td>
<td>4.073</td>
<td>0.597</td>
<td>87.922</td>
<td>0.7</td>
<td>4.752</td>
<td>0.682</td>
<td>87.625</td>
<td>0.8</td>
<td>5.432</td>
<td>0.767</td>
<td>87.327</td>
</tr>
<tr>
<td>0.9</td>
<td>6.112</td>
<td>1.190</td>
<td>86.935</td>
<td>1</td>
<td>6.793</td>
<td>1.359</td>
<td>86.535</td>
<td>1.1</td>
<td>7.474</td>
<td>1.526</td>
<td>86.134</td>
</tr>
<tr>
<td>1.2</td>
<td>8.156</td>
<td>1.610</td>
<td>85.731</td>
<td>1.3</td>
<td>8.838</td>
<td>1.776</td>
<td>85.335</td>
<td>1.4</td>
<td>9.520</td>
<td>1.937</td>
<td>85.035</td>
</tr>
<tr>
<td>1.5</td>
<td>10.204</td>
<td>2.190</td>
<td>84.935</td>
<td>1.6</td>
<td>10.888</td>
<td>2.359</td>
<td>84.535</td>
<td>1.7</td>
<td>11.573</td>
<td>2.526</td>
<td>84.135</td>
</tr>
<tr>
<td>1.8</td>
<td>12.258</td>
<td>2.671</td>
<td>83.731</td>
<td>1.9</td>
<td>12.944</td>
<td>2.836</td>
<td>83.335</td>
<td>2</td>
<td>13.622</td>
<td>3.001</td>
<td>82.935</td>
</tr>
<tr>
<td>2.1</td>
<td>14.300</td>
<td>3.166</td>
<td>82.531</td>
<td>2.2</td>
<td>14.987</td>
<td>3.331</td>
<td>82.135</td>
<td>2.3</td>
<td>15.656</td>
<td>3.501</td>
<td>81.731</td>
</tr>
<tr>
<td>2.4</td>
<td>16.332</td>
<td>3.671</td>
<td>81.335</td>
<td>2.5</td>
<td>17.007</td>
<td>3.841</td>
<td>80.935</td>
<td>2.6</td>
<td>17.673</td>
<td>4.011</td>
<td>80.535</td>
</tr>
<tr>
<td>3</td>
<td>20.332</td>
<td>4.681</td>
<td>78.735</td>
<td>3.1</td>
<td>21.007</td>
<td>4.851</td>
<td>78.335</td>
<td>3.2</td>
<td>21.664</td>
<td>5.021</td>
<td>77.935</td>
</tr>
<tr>
<td>3.3</td>
<td>22.332</td>
<td>5.281</td>
<td>77.735</td>
<td>3.4</td>
<td>23.007</td>
<td>5.451</td>
<td>77.335</td>
<td>3.5</td>
<td>23.664</td>
<td>5.621</td>
<td>76.935</td>
</tr>
<tr>
<td>3.6</td>
<td>24.332</td>
<td>5.881</td>
<td>76.735</td>
<td>3.7</td>
<td>25.007</td>
<td>6.051</td>
<td>76.335</td>
<td>3.8</td>
<td>25.664</td>
<td>6.221</td>
<td>75.935</td>
</tr>
<tr>
<td>4</td>
<td>26.332</td>
<td>6.481</td>
<td>75.735</td>
<td>4.1</td>
<td>27.007</td>
<td>6.651</td>
<td>75.335</td>
<td>4.2</td>
<td>27.664</td>
<td>6.821</td>
<td>74.935</td>
</tr>
<tr>
<td>4.3</td>
<td>28.332</td>
<td>7.081</td>
<td>74.735</td>
<td>4.4</td>
<td>29.007</td>
<td>7.251</td>
<td>74.335</td>
<td>4.5</td>
<td>29.664</td>
<td>7.421</td>
<td>73.935</td>
</tr>
<tr>
<td>4.6</td>
<td>30.332</td>
<td>7.681</td>
<td>73.735</td>
<td>4.7</td>
<td>31.007</td>
<td>7.851</td>
<td>73.335</td>
<td>4.8</td>
<td>31.664</td>
<td>8.021</td>
<td>72.935</td>
</tr>
<tr>
<td>5</td>
<td>32.332</td>
<td>8.281</td>
<td>72.735</td>
<td>5.1</td>
<td>33.007</td>
<td>8.451</td>
<td>72.335</td>
<td>5.2</td>
<td>33.664</td>
<td>8.621</td>
<td>71.935</td>
</tr>
</tbody>
</table>

Order Hotline +49 7144.907-333
7.6 Max. eccentricity of 16 mm
7.6.1 C-axis movement at adjusting measure A=60.0 mm

<table>
<thead>
<tr>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
<th>e</th>
<th>alpha α</th>
<th>beta β</th>
<th>delta δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.1</td>
<td>0.621</td>
<td>0.095</td>
<td>89.737</td>
<td>0.2</td>
<td>1.241</td>
<td>0.191</td>
<td>89.475</td>
</tr>
<tr>
<td>0.3</td>
<td>1.862</td>
<td>0.286</td>
<td>89.212</td>
<td>0.4</td>
<td>2.483</td>
<td>0.382</td>
<td>88.949</td>
<td>0.5</td>
<td>3.104</td>
<td>0.477</td>
<td>88.686</td>
</tr>
<tr>
<td>0.6</td>
<td>3.726</td>
<td>0.573</td>
<td>88.423</td>
<td>0.7</td>
<td>4.347</td>
<td>0.668</td>
<td>88.223</td>
<td>0.8</td>
<td>4.969</td>
<td>0.763</td>
<td>87.897</td>
</tr>
<tr>
<td>0.9</td>
<td>5.591</td>
<td>0.858</td>
<td>87.634</td>
<td>1</td>
<td>6.214</td>
<td>0.953</td>
<td>87.370</td>
<td>1.1</td>
<td>6.836</td>
<td>1.048</td>
<td>87.106</td>
</tr>
<tr>
<td>1.2</td>
<td>7.460</td>
<td>1.143</td>
<td>86.842</td>
<td>1.3</td>
<td>8.083</td>
<td>1.237</td>
<td>86.577</td>
<td>1.4</td>
<td>8.708</td>
<td>1.332</td>
<td>86.312</td>
</tr>
<tr>
<td>1.5</td>
<td>9.333</td>
<td>1.426</td>
<td>85.781</td>
<td>1.6</td>
<td>9.958</td>
<td>1.520</td>
<td>85.515</td>
<td>1.7</td>
<td>10.584</td>
<td>1.614</td>
<td>85.249</td>
</tr>
<tr>
<td>1.9</td>
<td>11.388</td>
<td>1.802</td>
<td>84.982</td>
<td>2</td>
<td>12.466</td>
<td>1.985</td>
<td>84.714</td>
<td>2.1</td>
<td>13.095</td>
<td>2.081</td>
<td>84.447</td>
</tr>
<tr>
<td>2.4</td>
<td>14.987</td>
<td>2.266</td>
<td>83.640</td>
<td>2.5</td>
<td>16.250</td>
<td>2.359</td>
<td>83.369</td>
<td>2.6</td>
<td>17.524</td>
<td>2.451</td>
<td>83.099</td>
</tr>
<tr>
<td>2.9</td>
<td>18.888</td>
<td>2.542</td>
<td>82.827</td>
<td>3</td>
<td>20.174</td>
<td>2.633</td>
<td>82.555</td>
<td>3.2</td>
<td>20.720</td>
<td>2.737</td>
<td>82.182</td>
</tr>
</tbody>
</table>

Order Hotline +49 7144.907-333
7.7 Max. eccentricity of 17 mm

7.7.1 C-Axis movement at adjusting measure \(A = 90.0 \, \text{mm} \)

<table>
<thead>
<tr>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\delta)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\delta)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\delta)</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\delta)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
</tr>
<tr>
<td>0.1</td>
<td>0.610</td>
<td>0.064</td>
<td>89.727</td>
<td>5.1</td>
<td>31.816</td>
<td>3.099</td>
<td>75.641</td>
<td>10.1</td>
<td>67.720</td>
<td>5.179</td>
<td>58.729</td>
</tr>
<tr>
<td>0.2</td>
<td>1.221</td>
<td>0.127</td>
<td>89.453</td>
<td>5.2</td>
<td>32.469</td>
<td>3.153</td>
<td>75.342</td>
<td>10.2</td>
<td>68.538</td>
<td>5.202</td>
<td>58.332</td>
</tr>
<tr>
<td>0.3</td>
<td>1.831</td>
<td>0.191</td>
<td>89.180</td>
<td>5.3</td>
<td>33.124</td>
<td>3.208</td>
<td>75.042</td>
<td>10.3</td>
<td>69.361</td>
<td>5.224</td>
<td>57.931</td>
</tr>
<tr>
<td>0.4</td>
<td>2.442</td>
<td>0.255</td>
<td>88.806</td>
<td>5.4</td>
<td>33.780</td>
<td>3.261</td>
<td>74.741</td>
<td>10.4</td>
<td>70.190</td>
<td>5.245</td>
<td>57.527</td>
</tr>
<tr>
<td>0.5</td>
<td>3.053</td>
<td>0.318</td>
<td>88.433</td>
<td>5.5</td>
<td>34.438</td>
<td>3.315</td>
<td>74.438</td>
<td>10.5</td>
<td>71.025</td>
<td>5.264</td>
<td>57.120</td>
</tr>
<tr>
<td>0.6</td>
<td>3.664</td>
<td>0.382</td>
<td>88.059</td>
<td>5.6</td>
<td>35.098</td>
<td>3.368</td>
<td>74.135</td>
<td>10.6</td>
<td>71.865</td>
<td>5.283</td>
<td>56.709</td>
</tr>
<tr>
<td>0.7</td>
<td>4.275</td>
<td>0.445</td>
<td>87.685</td>
<td>5.7</td>
<td>35.760</td>
<td>3.421</td>
<td>73.830</td>
<td>10.7</td>
<td>72.713</td>
<td>5.301</td>
<td>56.294</td>
</tr>
<tr>
<td>0.8</td>
<td>4.886</td>
<td>0.509</td>
<td>87.311</td>
<td>5.8</td>
<td>36.424</td>
<td>3.473</td>
<td>73.524</td>
<td>10.8</td>
<td>73.566</td>
<td>5.317</td>
<td>55.867</td>
</tr>
<tr>
<td>0.9</td>
<td>5.497</td>
<td>0.572</td>
<td>86.937</td>
<td>5.9</td>
<td>37.090</td>
<td>3.525</td>
<td>73.217</td>
<td>10.9</td>
<td>74.426</td>
<td>5.333</td>
<td>55.453</td>
</tr>
<tr>
<td>1.0</td>
<td>6.109</td>
<td>0.636</td>
<td>86.563</td>
<td>6.0</td>
<td>37.758</td>
<td>3.576</td>
<td>72.909</td>
<td>11.0</td>
<td>75.293</td>
<td>5.347</td>
<td>55.027</td>
</tr>
<tr>
<td>1.1</td>
<td>6.721</td>
<td>0.699</td>
<td>86.189</td>
<td>6.1</td>
<td>38.429</td>
<td>3.627</td>
<td>72.599</td>
<td>11.1</td>
<td>76.167</td>
<td>5.360</td>
<td>54.596</td>
</tr>
<tr>
<td>1.2</td>
<td>7.333</td>
<td>0.762</td>
<td>85.814</td>
<td>6.2</td>
<td>39.101</td>
<td>3.678</td>
<td>72.288</td>
<td>11.2</td>
<td>77.049</td>
<td>5.372</td>
<td>54.162</td>
</tr>
<tr>
<td>1.3</td>
<td>7.946</td>
<td>0.825</td>
<td>85.439</td>
<td>6.3</td>
<td>39.776</td>
<td>3.728</td>
<td>71.976</td>
<td>11.3</td>
<td>77.937</td>
<td>5.383</td>
<td>53.723</td>
</tr>
<tr>
<td>1.4</td>
<td>8.559</td>
<td>0.888</td>
<td>85.064</td>
<td>6.4</td>
<td>40.453</td>
<td>3.777</td>
<td>71.662</td>
<td>11.4</td>
<td>78.833</td>
<td>5.392</td>
<td>53.279</td>
</tr>
<tr>
<td>1.5</td>
<td>9.173</td>
<td>0.951</td>
<td>84.689</td>
<td>6.5</td>
<td>41.133</td>
<td>3.826</td>
<td>71.347</td>
<td>11.5</td>
<td>79.737</td>
<td>5.400</td>
<td>52.831</td>
</tr>
<tr>
<td>1.6</td>
<td>9.787</td>
<td>1.014</td>
<td>84.314</td>
<td>6.6</td>
<td>41.814</td>
<td>3.875</td>
<td>71.030</td>
<td>11.6</td>
<td>80.649</td>
<td>5.406</td>
<td>52.379</td>
</tr>
<tr>
<td>1.7</td>
<td>10.401</td>
<td>1.077</td>
<td>83.938</td>
<td>6.7</td>
<td>42.499</td>
<td>3.923</td>
<td>70.712</td>
<td>11.7</td>
<td>81.569</td>
<td>5.412</td>
<td>51.921</td>
</tr>
<tr>
<td>1.8</td>
<td>11.016</td>
<td>1.140</td>
<td>83.562</td>
<td>6.8</td>
<td>43.186</td>
<td>3.971</td>
<td>70.393</td>
<td>11.8</td>
<td>82.498</td>
<td>5.416</td>
<td>51.459</td>
</tr>
<tr>
<td>1.9</td>
<td>11.632</td>
<td>1.202</td>
<td>83.187</td>
<td>6.9</td>
<td>43.875</td>
<td>4.018</td>
<td>70.071</td>
<td>11.9</td>
<td>83.346</td>
<td>5.418</td>
<td>50.991</td>
</tr>
<tr>
<td>2.0</td>
<td>12.248</td>
<td>1.265</td>
<td>82.812</td>
<td>7.0</td>
<td>44.567</td>
<td>4.064</td>
<td>69.749</td>
<td>12.0</td>
<td>84.282</td>
<td>5.419</td>
<td>50.518</td>
</tr>
</tbody>
</table>

For eccentric chuck – C-Axis.

Order Hotline +49 7144.907-333
8 Disassembly, subsequent storage, disposal

If there is break in production that lasts longer than 3 days, the clamping device must be disassembled and properly stored in accordance with the manufacturer’s specifications [see section »Transport, packaging, storage«].

Prior to disassembling:

- Put the machine in set-up mode.
- Remove fuels and auxiliary materials, as well as residual processing materials and dispose of these items in an environmentally-responsible manner.

8.1 Safety

Safeguarding against restart

DANGER!
Life-threatening danger if restarted without authorization

When disassembling there is danger of the energy supply being switched on inadvertently. This poses a life-threatening hazard for persons in the danger zone.

- Prior to starting the tasks switch off all energy supplies and safeguard them from being switched on again.

WARNING!
Danger of injury due to falling components!

When mounting components can fall and cause severe injury and material damage.

- Two people are always required for this task.
- Use a crane.
- For assembly on a vertically suspended spindle always use a suitable mounting aid.

DANGER!
Risk of injury by released energy!

Risk of injury during the disassembling of the balance weight due to released energy.

- Pay attention to the safety instruction during the disassembly of the stroke limit screw.
WARNING
Risk of injury due to stored energy!

The clamping device can be designed with disc springs. These disc springs are under permanent tension! The release of the stored energy can cause injuries!

- By loosening the corresponding screws they have to be operated continuously alternately to reduce the clamping pressure to a minimum!
- Particularly cautious approach is required!
- For cleaning and maintenance disassemble the clamping device from the machine!
- Always wear personal protective equipment!

WARNING!
Danger of injury due to vertical suspended spindle!

Bending into the machine work are when assembling overhead can cause severe head injuries.

- Secure components prior to overhead assembly.
- For assembly on a vertically suspended spindle always use a suitable mounting aid.
8.2 Disassembly of the workpiece end-stop

Special tools required:
- Allen wrench

1. Loosen and remove the mounting screws.
2. Remove the workpiece end-stop out of the clamping device through the assembled clamping head.

Fig. 21

8.3 Disassembly of the eccentric chuck

Two people are required for this task.

Special tools required:
- Allen wrench
- Crane and eye bolts from weight 15 kg

1. Put the machine tool in set up mode.
2. Remove all tools from the interior of the machine.
3. Set the clamping pressure of the machine tool on the lowest setting.
4. Move the drawtube of the machine tool into the front stop position.
5. Loosen and remove the 8 mounting screws [H] at the spindle flange.
6. Turn the clamping unit in the bayonet by 60°.
7. Remove the clamping unit [E] from the threaded adapter.
8. Loosen and remove the cylindrical screws [M].
9. Remove the spindle flange [B] by the threaded adapter [A] from the machine spindle.
10. Unscrew the threaded adapter [A] from the drawtube of the machine.
8.4 Subsequent storage of the clamping device

The clamping device must be cleaned and treated with corrosion protection for subsequent storage [see section »Cleaning«].

NOTE!
The storage conditions are specified in the section »Transport, packaging and storage«.

8.5 Disposal

If a return or disposal agreement has not been concluded, then recycle disassembled components.

CAUTION!
Risk of injury due to leaking fluids!
Hydraulically or pneumatically operated clamping devices may contain residues of liquids. Uncontrolled leakage of fluids can lead to severe injuries.
- Open the pressure relief screw and drain remaining liquid.
- Discard the liquid.

NOTE!
Improper disposal causes environmental damage!
Lubricants and other auxiliary materials are subject to treatment as special waste, and should only be disposed of by approved specialist companies!

NOTE!
Composite materials!
For disposal clamping devices which include composite materials [mineral cast, CFK] must be returned at HAINBUCH!

Local municipal authorities or specialized disposal companies provide information on environmentally-responsible disposal.
9 Maintenance

Environmental protection

Comply with the following instructions for environmental protection when performing maintenance work:

- At all lubricating points where lubricant is applied by hand, remove escaping, used, or excess grease, and dispose of it in accordance with applicable local regulations.
- Collect used oil in suitable containers and dispose of it in accordance with applicable local regulations.

9.1 General

Cleanliness of the appropriate end-stop as well as the guidance diameters are conditions for reaching the concentricity and perpendicularity tolerances. Clean these surfaces with an appropriate cleaner.

CAUTION

Danger of injury due to improper handling of cleaners!

Improper handling of cleaners can cause health impairments.

- Always comply with the safety data sheets and guidelines provided by the manufacturer of the cleaning agent for handling/using the cleaners.

CAUTION

Danger of injury due to loss of clamping force!

Fouling of the clamping device can cause the clamping device to lose considerable clamping force.

- Always comply with the maintenance and cleaning intervals specified in this manual.
- In conjunction with the maintenance intervals, regularly check the maintenance status of the clamping device through clamping force measurements.

Risk of injury!

Slipping while the lubricating with a grease gun can lead to severe cuts!
9.2 Cleaning

NOTE!

Material damage if cleaned with compressed air!

Cleaning the clamping device with compressed air can force metal chips into thread and grooves. This can damage or even destroy the clamping device.

- Never clean the clamping device with compressed air!

- Auxiliary material required:
 - Ester-free, non-polar cleaning agent
 - Soft, lint-free cloth

1. Disassemble the clamping device [see section »Disassembling the clamping unit«].

2. Clean all the components listed below with cleaning agent and a cloth; remove all oil and grease residues:
 - Spindle flange
 - Clamping unit
 - Taper reception and coupling area
 - Drawtube adapter
 - Threaded adapter [optional]
 - Cylindrical screws
9.3 Preservation

- Special tools required:
 - Universal grease 2085/0003
 - Grease gun
 - Oil stone
 - Soft, lint-free cloth

1. Disassembling the clamping device [see section «Disassembling the clamping unit»].
2. Hone all the bearing surfaces of the clamping device with an oil stone.
3. Lightly grease all cylindrical screws. Remove excess grease with a cloth.
4. Remount the clamping devices.
5. Screw all cylindrical screws into the clamping device again and tighten them hand tight.

For subsequent storage tightening the cylindrical screws hand tight suffices. This facilitates re-commissioning and protects the cylindrical screws.

6. Use the lubricating nipples to grease the clamping unit with a grease gun and universal grease.
7. Lightly grease all interior and outer surfaces of the clamping device. Remove excess grease with a cloth.
8. Pack the clamping device airtight in foil. Place it on a level, impact-free storage location and safeguard it from falling.

9.4 Use of lubricant

With the usage of lubricant you may only use grease that corresponds to the requirements concerning bond, pressure-stability and solubility in lubricating coolant. In addition no dirt particles may be in the grease; they cause run errors if they come in between two mating surfaces.

We recommend for this the following lubricant:

HAINBUCH grease

See optional Accessories
Alternatives:

<table>
<thead>
<tr>
<th>Lubricant</th>
<th>Manufacturer</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>Universal grease</td>
<td>MicroGleit</td>
<td>GP 355</td>
</tr>
<tr>
<td></td>
<td>Klüber</td>
<td>QNB 50</td>
</tr>
<tr>
<td></td>
<td>Zeller & Gmelin</td>
<td>DIVINOL SD24440</td>
</tr>
<tr>
<td></td>
<td>Bremer & Leguill</td>
<td>RIVOLTA W.A.P.</td>
</tr>
<tr>
<td>Special grease</td>
<td>Klüber</td>
<td>MICROLUBE GL 261</td>
</tr>
</tbody>
</table>

9.5 Maintenance schedule

Maintenance tasks are described in the sections above that are required for optimal and trouble-free operation.

If increased wear is detected during regular inspections, then reduce the required maintenance intervals according to the actual indications of wear.

Contact the manufacturer, [see the service address on the back] if you have questions concerning maintenance tasks and intervals.

<table>
<thead>
<tr>
<th>Interval</th>
<th>Maintenance task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Daily</td>
<td>Visual inspection and complete cleaning in case of heavy contamination [see section »Cleaning«]</td>
</tr>
<tr>
<td>Weekly</td>
<td>Clean the clamping unit [see section »Cleaning«]</td>
</tr>
<tr>
<td></td>
<td>Clean the taper reception and coupling area [see section »Cleaning«]</td>
</tr>
<tr>
<td></td>
<td>Grease the clamping unit [see section »Preservation«]</td>
</tr>
<tr>
<td>Every 6 months</td>
<td>Completely disassemble and clean the clamping unit [see section »Cleaning«]</td>
</tr>
</tbody>
</table>

For proper operation of the coolant feed a pre-filtering with duplex filter (mesh size 100 μm, PI 3754) is necessary. The duplex filter is mounted on the coolant cleaning system.
9.6 Bolt torque

Metric ISO thread

The guide values for bolt tightening torque for achieving the highest permissible pre-tension for metric ISO thread are specified in Nm in the table.

- Total friction coefficient $\mu_{\text{tot}} = 0.12$

<table>
<thead>
<tr>
<th>Diameter</th>
<th>Torque for screw quality 10.9 [Nm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>M 4</td>
<td>4</td>
</tr>
<tr>
<td>M 5</td>
<td>7</td>
</tr>
<tr>
<td>M 6</td>
<td>12</td>
</tr>
<tr>
<td>M 8</td>
<td>25</td>
</tr>
<tr>
<td>M 10</td>
<td>50</td>
</tr>
<tr>
<td>M 12</td>
<td>100</td>
</tr>
<tr>
<td>M 16</td>
<td>220</td>
</tr>
<tr>
<td>M 20</td>
<td>400</td>
</tr>
<tr>
<td>M 24</td>
<td>600</td>
</tr>
</tbody>
</table>

The table shows the prescribed values.
Knowledge of the applicable guidelines and configuration criteria are the prerequisites.
10 Trouble shooting

Possible fault causes and the tasks to correct these faults are described in the following section.
If faults occur more frequently, the maintenance intervals must be shortened to correspond to the actual system load.
Contact the manufacturer if there are faults that cannot be corrected by following the instructions below; see the service address on the back of this operating instruction.

10.1 Safety

The following always applies:

1. For faults that pose a direct danger for personnel and or property immediately execute the emergency-stop function of the machine.
2. Determine the cause of the fault.
3. If correction of the fault requires work in the danger zone, put the machine in set-up mode.
4. Immediately inform the responsible parties at the installation site of the fault.
5. Depending on the type of fault, either have authorized specialized personnel correct the fault, or correct it yourself.

The trouble shooting table provided below lists personnel who are authorized to correct the fault.

6. If there is a fault that was not caused by the clamping device the cause of the fault may be in the machine area. See the operating manual for the machine in this regard.
10.2 Trouble shooting table

<table>
<thead>
<tr>
<th>Fault</th>
<th>Possible cause</th>
<th>Fault correction</th>
<th>Corrected by</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clamping device does not open or the release stroke is insufficient.</td>
<td>Fouling between the draw mechanism and the clamping unit</td>
<td>Remove the clamping head, move the draw tube back and clean the coupling area [see section »Disassembling the clamping head«].</td>
<td>Specialist</td>
</tr>
<tr>
<td></td>
<td>Dimensional deviation of the draw tube adapter</td>
<td>Check the dimensions of the draw tube adapter and correct them if necessary.</td>
<td>Specialist</td>
</tr>
<tr>
<td>Clamping force is too low</td>
<td>Work piece is under-dimensioned</td>
<td>Replace with a suitable clamping head</td>
<td>Specialist</td>
</tr>
<tr>
<td></td>
<td>Insufficient hydraulic pressure on the clamping cylinder</td>
<td>Check the machine-side hydraulic aggregate</td>
<td>Hydraulic specialist</td>
</tr>
<tr>
<td></td>
<td>Defective clamping cylinder or blocked draw tube</td>
<td>Contact the machine manufacturer</td>
<td>Machine manufacturer</td>
</tr>
<tr>
<td></td>
<td>Compression springs fatigued [at permanent tension]</td>
<td>Replace compression springs</td>
<td>Specialist</td>
</tr>
<tr>
<td>Eccentric dimensional deviation on the work piece</td>
<td>Contaminated coupling area</td>
<td>Clean the coupling are of the clamping unit [see chapter »Cleaning«].</td>
<td>Specialist</td>
</tr>
<tr>
<td></td>
<td>Contaminated clamping cone</td>
<td>Disassemble and clean the clamping head [see chapter »Cleaning«].</td>
<td>Specialist</td>
</tr>
<tr>
<td>Formal defect on the work piece</td>
<td>Elastic deformation of feedstock that is subject to formal defects. After machining, the work piece returns to its original form.</td>
<td>Use feedstock with fewer formal defects. Use a clamping head with several sharp teeth in the clamping surface.</td>
<td>Specialist</td>
</tr>
</tbody>
</table>
10.3 Start-up after corrected fault

After correcting the fault execute the following steps to start up again:

1. Reset the emergency-stop device
2. Acknowledge the fault on the machine tool controller
3. Ensure that no one is in the danger zone
4. Start the machine tool
11 Appendix

11.1 Service Hotline

Order Hotline
Quickly ordered and delivered. A call is all it takes:
+49 7144. 907-333

Schedule Hotline
Current status of your order? Just call:
+49 7144. 907-222

24h emergency call
Has there been a crash or other technical emergency?
Our experts are at your service around the clock:
+49 7144. 907-444

11.2 Representatives

The sales partners and service employees listed below are available for further consultation or support.

11.2.1 Europe

Austria
HAINBUCH in Austria GmbH
SPANNENDE TECHNIK
Pillweinstr. 16
5020 Salzburg
Phone +43 662 825309
E-mail: verkauf@hainbuch.at
Internet: www.hainbuch.com

Belgium
BIS Technics bvba/sprl
Zevenputtenstraat 20
3690 Zutendaal
Phone +32 89518890
Fax +32 89518899
E-mail: info@bistechnics.com
Internet: www.bistechnics.com

Czech Republic
TMC CR s.r.o.
Masná 27/9
60200 Brno
Phone +420 533433722
Fax +420 548217219
E-mail: info@tmccr.cz
Internet: www.tmccr.cz

Denmark
Jørn B. Herringe A/S
Ramsømagle
Syvvejen 31
4621 Gadstrup
Phone +45 46170000
Fax +45 46170001
E-mail: sales@jbh-tools.dk
Internet: www.jbh-tools.dk

Estonia, Latvia, Lithuania
DV-Tools OÜ
Peterburi tee 34/4
11415 Tallinn
Phone +372 6030508
Fax +372 6030508
E-mail: info@dv-tools.ee
Internet: www.dv-tools.ee

Austria
GGW Gruber & Co. GmbH
Kolingasse 6
1090 Vienna
Phone +43 13107596-0
Fax +43 13107596-31
E-Mail: office@ggwgruber.com
Internet: www.ggwgruber.com
Finland
Oy Maanterä Ab
PL 70 Keinumäenkuja 2
01510 Vantaa
Phone +358 29006130
Fax +358 290061130
E-mail: maantera@maantera.fi
Internet: www.maantera.fi

France
Representative for: Haute Savoie
Utilis France Sarl
597, Avenue du Mont Blanc
74460 Marnaz
Phone +33 450963630
Fax +33 450963793
E-mail: contact@utilis.com
Internet: www.utilis.com

Greece
PAPET Papadopoulos GbR
Martinstrasse 68
DE-73061 Ebersbach/Fils
Phone +49 71635858/530668
Fax +49 716352265
E-mail: paris@papet-technologies.de

Ireland
HAINBUCH UK Ltd.
WORKHOLDING TECHNOLOGY
6 Newmarket
Keys Business Village, Keys Park Road
Hednesford, Staffordshire
WS12 2HA
Phone +44 1543 278731
Fax +44 1543 478711
Mobile +44 7980212784
E-mail: nick.peter@hainbuch.co.uk
Internet: www.hainbuch.com

Italy
HAINBUCH Italia srl
Via Caduti di Nassiriya 5
22036 Cantu [Co]
Phone +39 0313355351
Fax +39 031611570
E-mail: info@hainbuchitalia.it
Internet: www.hainbuchitalia.it

Netherlands
BIS Specials
[Brandenburg Industry Service Dongen BV]
Dreef 7
6996 BA Drempt
Phone +31 313482566
Fax +31 313482569
E-mail: info@bisspecials.com
Internet: www.bisspecials.com

France
HAINBUCH France SNC
Equipements de machines-outils
ZI Lons-Perrigny
1600, Route de la Lième
39570 Lons-le-Saunier
Phone +33 384876666
Fax +33 384876677
E-mail: info@hainbuch.fr
Internet: www.hainbuch.com

Great Britain
HAINBUCH UK Ltd.
WORKHOLDING TECHNOLOGY
6 Newmarket
Keys Business Village, Keys Park Road
Hednesford, Staffordshire
WS12 2HA
Phone +44 1543 278731
Fax +44 1543 478711
Mobile +44 7980212784
E-mail: nick.peter@hainbuch.co.uk
Internet: www.hainbuch.com

Hungary
GIMEX Hydraulik GmbH
Selyem utca 1.
9025 Győr
Phone +36 96525588
Fax +36 96427239
E-mail: info@gimex.hu
Internet: www.gimex.hu

Ireland
HAINBUCH UK Ltd.
WORKHOLDING TECHNOLOGY
6 Newmarket
Keys Business Village, Keys Park Road
Hednesford, Staffordshire
WS12 2HA
Phone +44 1543 278731
Fax +44 1543 478711
Mobile +44 7980212784
E-mail: nick.peter@hainbuch.co.uk
Internet: www.hainbuch.com

Netherlands
BIS Specials
[Brandenburg Industry Service Dongen BV]
Dreef 7
6996 BA Drempt
Phone +31 313482566
Fax +31 313482569
E-mail: info@bisspecials.com
Internet: www.bisspecials.com

Norway
Onstad Maskin A/S
Chr. H. Blomsgt. 13
3717 Skien
Phone +47 35532373/74
Fax +47 35532375
E-mail: postmaster@onstadmaskin.no
Internet: www.onstadmaskin.no

Order Hotline +49 7144.907-333
Poland
BIM Sp. z o.o.
Złotniki, ul. Kobaltowa 6
62-002 Suchy Las
Phone +48 616232041
Fax +48 616232040
E-mail: bim@bazafirm.pl

Russia
ROSNA Engineering LLC
Sveaborgskaya street, 12, Letter »A«, office 20N,
196105 Saint-Petersburg
Phone +7 812 4016767
Fax +7 812 4016767
E-mail: rosna@rosna.spb.ru
Internet: www.rosna.spb.ru

Slovakia
NS s.r.o.
Vácka ulica 4109/10
01841 Dubnica N/V
Phone +421 424450873
Fax +421 424440406
E-mail: tns@tnssro.sk
Internet: www.tnssro.eu

Spain, Portugal
ATM S.L
C/. Gran Bretanya, 16
Pol. Ind. Pla de Llerona
08520 Les Franqueses del Vallès
[Barcelona]
Phone +34 938700885
Fax +34 938606572
E-mail: atm.sl@atmbarcelona.com

SWITZERLAND
Utilis Müllheim AG
Präzisionswerkzeuge
Kreuzlinger Strasse 22
CH-8555 Müllheim
Phone +41 527626262
Fax +41 527626200
E-mail: info@utilis.com
Internet: www.utilis.com
11.2.2 America

Argentina
HAINBUCH America Corp.
WORKHOLDING TECHNOLOGY
W129N10980 Washington Dr.
Germantown, WI 53022
U.S.A
Phone +1 4143589550
Fax +1 4143589560
E-mail: sales@hainbuchamerica.com
Internet: www.hainbuchamerica.com

Canada
HAINBUCH America Corp.
WORKHOLDING TECHNOLOGY
W129 N10980 Washington Dr.
Germantown, WI 53022
U.S.A
Phone +1 4143589550
Fax +1 4143589560
E-mail: sales@hainbuchamerica.com
Internet: www.hainbuchamerica.com

Mexico
HAINBUCH America Corp.
WORKHOLDING TECHNOLOGY
W129 N10980 Washington Dr.
Germantown, WI 53022
Phone +1 4143589550
Fax +1 4143589560
E-mail: sales@hainbuchamerica.com
Internet: www.hainbuchamerica.com

11.2.3 Asia

China
HAINBUCH Shanghai Co. Ltd.
WORKHOLDING TECHNOLOGY
Room 611-612 BaoHong Center
No. 7755 Zhongchun Road
Minhang District, Shanghai 201101
Phone +86 2120916384
Fax +86 2120916383
E-mail: sales@hainbuch.cn
Internet: www.hainbuch.cn

India
M’la Sales Corporation
5, Yeshwanthnagar
Telco-Century Enka Road
Pimpri, Pune 411018
Phone +91 20 27477405
Fax +91 20 27464249
E-mail: info@mla-sales.com
Internet: www.mla-sales.com

Indonesia
PT. STAHL ARBEIT
WTC Mangga Dua 2nd Floor A-6
JL. Mangga Dua Raya No. 8
Level 2 Blok C No. 41-45
Jakarta 14430
Phone +62 21 3777 6622
Fax +62 21 3001 8070
E-mail: info@stahl-arbeit.com
Internet: www.stahl-arbeit.com
Israel
M.T.M. Machine Tools Marketing Ltd.
26 Hakishor St.
Holon 58867
Phone +972 36479560
Fax +972 36479578
E-mail: sales@mtm.co.il
Internet: www.mtm.co.il

Korea
Kimi Co.
B-101 98 Okgucheondongro Siheung-Si
429-925 Gyeonggi-Do
Phone +82 24137911
Fax +82 24137910
E-Mail: kimi@kimigroup.co.kr

Taiwan
GSTC Technology Co., Ltd.
No. 418, Youn-Chun East 1st Rd
Taichung City 40877, Taiwan
Phone +88 6423805678
Fax +88 6423805511
E-mail: gstc@seed.net.tw
Internet: www.gstctech.com.tw

Japan
NK Works Co LTD
2-17-17 Iwamoto-cho, Chiyoda-ku
Tokyo, 101-0032
Phone +81 338645411
Fax +81 338646752
E-mail: info@nk-works.co.jp
Internet: www.nk-works.co.jp

Malaysia, Singapore & Vietnam
Jebsen & Jessen Technology [S] Pte Ltd.
Process Engineering Division
18 Enterprise Road
Singapore 629824
Phone +65 63053692
Fax +65 63053699
E-mail: phillip_lee@jjsea.com
Internet: www.jjsea.com

Thailand
HAINBUCH [Thailand] Co. Ltd
WORKHOLDING SOLUTIONS
2/25 Sukhapiban 2 Road Prawet,
Prawet, Bangkok 10250
Phone +662329 0622/23
Fax +662329 0624
E-Mail: info@hainbuch.co.th
Internet: www.hainbuch.com

11.2.4 Australia
Australia
Romheld Automation Pty Ltd
Unit 30 115 Woodpark Road
Smithfield . NSW. 2164
Phone +61 297211799
Fax +61 297211766
E-mail: sales@romheld.com.au
Internet: www.romheld.com.au

11.2.5 Africa
South Africa
South Africa Retecon [PTY] Ltd.
P.O. Box 1472
1620 Kempton Park
Phone +27 119768600
Fax +27 113942471
E-mail: tools@retecon.co.za
Internet: www.retecon.co.za
12 Index

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accessories</td>
<td>24</td>
</tr>
<tr>
<td>optional</td>
<td></td>
</tr>
<tr>
<td>Assembly</td>
<td></td>
</tr>
<tr>
<td>Clamping head</td>
<td>40</td>
</tr>
<tr>
<td>Work piece</td>
<td>43</td>
</tr>
<tr>
<td>Work piece end-stop</td>
<td>41</td>
</tr>
<tr>
<td>Bolt torque</td>
<td>67</td>
</tr>
<tr>
<td>Brief description</td>
<td>23</td>
</tr>
<tr>
<td>Changing fixture</td>
<td></td>
</tr>
<tr>
<td>Manual</td>
<td>25</td>
</tr>
<tr>
<td>pneumatic</td>
<td>25</td>
</tr>
<tr>
<td>Clamping head</td>
<td>25</td>
</tr>
<tr>
<td>Cleaning</td>
<td>64</td>
</tr>
<tr>
<td>Control of the stroke position</td>
<td>45</td>
</tr>
<tr>
<td>Dimensional sheet</td>
<td>22</td>
</tr>
<tr>
<td>Disassembly</td>
<td></td>
</tr>
<tr>
<td>Clamping head</td>
<td>40</td>
</tr>
<tr>
<td>Disposal</td>
<td>62</td>
</tr>
<tr>
<td>Environmental protection</td>
<td>19</td>
</tr>
<tr>
<td>Grease</td>
<td>26</td>
</tr>
<tr>
<td>Grease gun</td>
<td>26</td>
</tr>
<tr>
<td>Intended use</td>
<td>11</td>
</tr>
<tr>
<td>Maintenance schedule</td>
<td>66</td>
</tr>
<tr>
<td>Operating conditions</td>
<td>21</td>
</tr>
<tr>
<td>Overview</td>
<td>23</td>
</tr>
<tr>
<td>Packaging</td>
<td>29</td>
</tr>
<tr>
<td>Personal protective equipment</td>
<td></td>
</tr>
<tr>
<td>Hard hat</td>
<td>13</td>
</tr>
<tr>
<td>Protective gloves</td>
<td>13</td>
</tr>
<tr>
<td>Protective goggles</td>
<td>13</td>
</tr>
<tr>
<td>Protective work clothing</td>
<td>12</td>
</tr>
<tr>
<td>Safety footwear</td>
<td>12</td>
</tr>
<tr>
<td>Personnel requirements</td>
<td>10</td>
</tr>
<tr>
<td>Power specifications</td>
<td>21</td>
</tr>
<tr>
<td>Preservation</td>
<td>65</td>
</tr>
<tr>
<td>Representatives</td>
<td></td>
</tr>
<tr>
<td>Africa</td>
<td>75</td>
</tr>
<tr>
<td>America</td>
<td>74</td>
</tr>
<tr>
<td>Asia</td>
<td>74</td>
</tr>
<tr>
<td>Australia</td>
<td>75</td>
</tr>
<tr>
<td>Europe</td>
<td>71</td>
</tr>
<tr>
<td>Spare parts</td>
<td>8</td>
</tr>
<tr>
<td>Special dangers</td>
<td>13</td>
</tr>
<tr>
<td>Storing</td>
<td>30</td>
</tr>
<tr>
<td>Structure</td>
<td>23</td>
</tr>
<tr>
<td>Subsequent storage</td>
<td>59</td>
</tr>
<tr>
<td>Symbols on the packaging</td>
<td>27</td>
</tr>
<tr>
<td>Transport inspection</td>
<td>27</td>
</tr>
<tr>
<td>Transport, inner-company</td>
<td>28</td>
</tr>
<tr>
<td>Trouble shooting</td>
<td>68</td>
</tr>
<tr>
<td>Trouble shooting table</td>
<td>69</td>
</tr>
<tr>
<td>Type designation</td>
<td>22</td>
</tr>
<tr>
<td>Unpacking</td>
<td>28</td>
</tr>
<tr>
<td>Work piece end-stop</td>
<td>25</td>
</tr>
</tbody>
</table>
Eccentric chuck – C-Axis. Index
EC Declaration of conformity

EC Declaration of conformity according to EC directive 2006/42/EC on machinery [Annex II A]

Original-Konformitätserklärung / Translation of original declaration of conformity

Hersteller / Manufacturer: HAINBUCH GmbH Spannende Technik
Erdmannhäuser Straße 57
71672 Marbach
Deutschland

Diese Erklärung bezieht sich nur auf die Maschine in dem Zustand, in dem sie in Verkehr gebracht wurde; vom Endnutzer nachträglich angebrachte Teile und/oder nachträglich vorgenommene Eingriffe bleiben unberücksichtigt. Die Erklärung verliert ihre Gültigkeit, wenn das Produkt ohne Zustimmung umgebaut oder verändert wird. / This declaration relates exclusively to the machinery in the state in which it was placed on the market, and excludes components which are added and/or operations carried out subsequently by the final user. The declaration is no more valid, if the product is modified without agreement.

Hiermit erklären wir, dass die nachstehend beschriebene Maschine /
Herewith we declare, that the machinery described below

Produktbezeichnung / Product denomination: Eccentric chuck C axis

allen einschlägigen Bestimmungen der Maschinenrichtlinie 2006/42/EG entspricht. / is complying with all essential requirements of the Machinery Directive 2006/42/EC.

Angewandte harmonisierte Normen / Harmonised Standards used:

- EN ISO 12100:2011-03 Sicherheit von Maschinen – Allgemeine Gestaltungsleit- sätze / Safety of Machinery – Basic concepts
- DIN EN 1550:2008-07 Sicherheitsanforderungen für die Gestaltung und Konstruktion von Spannfuttern für die Werkstückaufnahme / Safety requirements for the design and construction of work holding chucks

Bevollmächtigter für die Zusammenstellung der technischen Unterlagen / The person authorized to compile the relevant technical documentation:

HAINBUCH GmbH Spannende Technik
Konstruktionsleitung
Erdmannhäuser Straße 57
71672 Marbach
Deutschland

Marbach, 01.01.2015

Ort, Datum / Place, Date
Konstruktionsleitung / Head of engineering
Funktion / function of signatory

Order Hotline +49 7144.907-333