

Betriebsanleitung [inkl. Montageanleitung]

MANOK plus

Originalbetriebsanleitung

Inhaltsverzeichnis

1	Allg	emeines	8				
	1.1	Informationen zu dieser Anleitung	8				
	1.2	Symbolerklärung	8				
	1.3	Definition von Begriffen	9				
		1.3.1 Lösestellung	9				
		1.3.2 Komplette Spannreserve	9				
	1.4	Haftungsbeschränkung	10				
	1.5	Urheberschutz	10				
	1.6	Lieferumfang	10				
	1.7	Ersatz- und Zubehörteile	11				
	1.8	Garantiebestimmungen	11				
2	Sich	nerheit	12				
	2.1	Verantwortung des Betreibers	12				
	2.2	Personalanforderungen	12				
	2.3	Bestimmungsgemäße Verwendung	14				
	2.4	Persönliche Schutzausrüstung	16				
	2.5	Besondere Gefahren	18				
	2.6	CFK-Produkte	19				
	2.7	Weitere Sicherheitshinweise	20				
	2.8	Schrauben	22				
	2.9	Funktionalität	22				
	2.10	Umweltschutz	23				
3	Tec	hnische Daten	24				
	3.1	Allgemeine Angaben	24				
	3.2	Leistungswerte	24				
	3.3	Wuchtgüte	25				
	3.4	Drehzahl	26				
	3.5	Spannkraftdiagramm	26				
		3.5.1 Baugröße 52	27				
		3.5.2 Baugröße 65	27				
	3.6	Umrechnung Betätigungsmoment – Betätigungskraft	28				
		3.6.1 Nomenklatur	28				
		3.6.2 Berechnung	28				
		3.6.3 Beispielrechnung	28				
		3.6.4 Diagramm Betätigungsmoment - Betätigungskraft	29				
	3.7	Betriebsbedingungen	29				
	3.8	Typenbezeichnung	29				
4	Aufk	pau und Funktion	30				
	4.1	1 Übersicht und Kurzbeschreibung					
	4.2	Benötigtes Zubehör	30				
		4.2.1 Spannkopf	30				

		4.2.2	Werkstückanschlag	31				
		4.2.3	Schutzbüchse	31				
	4.3	Option	ales Zubehör	31				
		4.3.1	Backenmodul	31				
		4.3.2	Magnetmodul	31				
		4.3.3	MANDO Adapt	31				
		4.3.4	Morsekegel Adaption	32				
		4.3.5	Stirnmitnehmer Adaption	32				
		4.3.6	Anschlagsystem vario part	32				
		4.3.7	Anschlagsystem vario quick	32				
		4.3.8	Drehmomentschlüsselsatz	32				
	4.4	Sonder	rhilfsmittel	33				
		4.4.1	Schlüssel	33				
		4.4.2	Schlüssel ohne Griffstange	33				
		4.4.3	Manuelle Wechselvorrichtung	33				
		4.4.4	Pneumatische Wechselvorrichtung	33				
5	Verv	wendung	g und Einsatzgrenzen	34				
	5.1	Verwer	ndung	34				
	5.2	Einsatz	zgrenzen	34				
		5.2.1	Nomenklatur	35				
		5.2.2	Erste Grenze [Werkstücklänge]	37				
		5.2.3	Zweite Grenze [Werkstückmasse]	37				
		5.2.4	Dritte Grenze [Einspannlänge]	38				
		5.2.5	Vierte Grenze [Kräfte]	38				
		5.2.6	Beispielrechnung	50				
6	Trar	nsport, V	/erpackung, Lagerung	54				
	6.1	Sicher	heit Transport, Verpackung, Lagerung	54				
	6.2	Symbo	ole auf der Verpackung	55				
	6.3	Transp	Transportinspektion					
	6.4	Auspad	cken und innerbetrieblicher Transport	56				
	6.5	Verpad	ckung	56				
	6.6	Lageru	ıng	57				
	6.7	Konser	rvierung	57				
	6.8	Wieder	reinlagerung	58				
7	Mon	itage		59				
	7.1	Sicher	heit Montage	59				
	7.2	3.						
	7.3							
	7.4							
	7.5	Montag	ge des Produktes	63				
		7.5.1	Kompatibilitätsprüfung	63				
		7.5.2	Vorbereitung des Produktes					
		7.5.3	Montage des Produktes auf die Maschine	64				

	7.6	Montag	ge des Spannelements	66				
	7.7	Montag	ge der Wechselteile	68				
		7.7.1	Montage der Variante direkt verschraubt	69				
		7.7.2	Montage der Variante x-fach axial verschraubt	70				
		7.7.3	Montage der Variante x-fach axial verschraubt Bajonett	71				
		7.7.4	Montage der Variante zentral axial verschraubt	72				
		7.7.5	Montage der Variante radial geklemmt	74				
	7.8	Ausrich	nten des Spannmittels mit Prüfkörper	75				
8	Inbe	etriebset	zung	76				
	8.1	Sicherl	heit Inbetriebsetzung	76				
	8.2	Überpr	üfung des Gesamthubs	78				
	8.3	Prüfun	gen	78				
	8.4	Werkst	tück	79				
		8.4.1	Werkstück spannen	81				
		8.4.2	Spannung des Werkstückes lösen	83				
	8.5	Vorgeh	nen nach Kollision	84				
9	Täti	gkeiten ı	nach Produktionsende	85				
10	Den	nontage		86				
	10.1	Sicherl	neit Demontage	86				
	10.2	2 Vorber	eitung der Maschine für die Demontage	88				
	10.3	B Demor	ntage der Wechselteile	88				
		10.3.1	Demontage der Variante direkt verschraubt	89				
		10.3.2	Demontage der Variante x-fach axial verschraubt	90				
		10.3.3	Demontage der Variante x-fach axial verschraubt Bajonett	91				
		10.3.4	Demontage der Variante zentral axial verschraubt	92				
		10.3.5	Demontage der Variante radial geklemmt	93				
	10.4	Demor	ntage des Spannelements	94				
	10.5	Demor	ntage des Produktes	96				
		10.5.1	Demontage des Produktes von der Maschine	97				
11	War	tung		98				
	11.1	Sicherl	neit Wartung	98				
	11.2	1.2 Wartungsplan						
	11.3	.3 Reinigung						
	11.4	Sichtpr	-üfung	100				
	11.5	Produk	kt abschmieren	101				
	11.6	Einsatz	z von Schmiermitteln	102				
12	Ents	sorgung		103				
13	Stör	ungen		104				
	13.1	Vorgeh	nen bei Störungen	104				
	13.2	13.2 Störungstabelle						
	13.3	3 Inbetrie	ebsetzung nach behobener Störung	106				
14	Anh	ang		107				
	14.1	Kontak	t	107				

MANOK plus

Tabellenverzeichnis

Tabelle 1:	Technische Daten	24
Tabelle 2:	Nomenklatur Umrechnung Betätigungsmoment –	
	Betätigungskraft	28
Tabelle 3:	Betriebsbedingungen	29
Tabelle 4:	Nomenklatur Einsatzgrenzen	36
Tabelle 5:	Maximale Werkstückmasse	37
Tabelle 6:	Streubreiten der Spannkraft	41
Tabelle 7:	Berührungsformen / -fall	41
Tabelle 8:	Berührungsfaktor	42
Tabelle 9:	Spezifische Schnittkräfte	43
Tabelle 10:	Reib-Koeffizient für Stahlwerkstücke	44
Tabelle 11:	Spannkopf-Masse und Abstand des Massenschwerpunkts de	r
	Spannkopf-Segmente zur Drehachse	45
Tabelle 12:	Maximal zulässige Reitstockkraft	47
Tabelle 13:	Maximal zulässige Schnittkraft	48
Tabelle 14:	Maximal zulässige Querkraft	49
Tabelle 15:	Maximal zulässiges Moment aufgrund Querkraft	50
Tabelle 16:	Schraubenanzugsdrehmomente metrische Regelgewinde	62
Tabelle 17:	Schraubenanzugsdrehmomente Aluminiumbauteile	62
Tabelle 18:	Wartungstabelle	99
Tabelle 19:	Auswahl Schmiermittel	102
Tabelle 20:	Störungstabelle	106

1 Allgemeines

1.1 Informationen zu dieser Anleitung

Diese Anleitung ermöglicht den sicheren und effizienten Umgang mit dem Produkt.

Die Anleitung ist Bestandteil des Produktes und muss in unmittelbarer Nähe des Produktes für das Personal jederzeit zugänglich aufbewahrt werden. Das Personal muss diese Anleitung vor Beginn aller Arbeiten sorgfältig durchgelesen und verstanden haben. Grundvoraussetzung für sicheres Arbeiten ist die Einhaltung aller angegebenen Sicherheitshinweise und Handlungsanweisungen in dieser Anleitung.

Wenn das Produkt an Dritte weitergegeben wird, muss diese Anleitung beigefügt werden.

Abbildungen in dieser Anleitung dienen dem grundsätzlichen Verständnis und können von der tatsächlichen Ausführung des Produktes abweichen.

WARNUNG

Schwere Verletzungen durch einzelne Produkte beziehungsweise deren unsachgemäßen Kombinationen!

 Alle Betriebsanleitungen der einzelnen Produkte und deren Kombinationen müssen gelesen und beachtet werden.

1.2 Symbolerklärung

Sicherheitshinweise sind in dieser Anleitung durch Symbole gekennzeichnet. Die Sicherheitshinweise werden durch Signalworte eingeleitet, die das Ausmaß der Gefährdung zum Ausdruck bringen.

Sicherheitshinweise unbedingt einhalten und umsichtig handeln, um Unfälle, Personen- und Sachschaden zu vermeiden.

Sicherheitshinweise

GEFAHR

... weist auf eine unmittelbar gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führt, wenn sie nicht gemieden wird.

WARNUNG

... weist auf eine möglicherweise gefährliche Situation hin, die zum Tod oder zu schweren Verletzungen führen kann, wenn sie nicht gemieden wird.

VORSICHT

... weist auf eine möglicherweise gefährliche Situation hin, die zu geringfügigen oder leichten Verletzungen führen kann, wenn sie nicht gemieden wird.

HINWEIS

... weist auf eine möglicherweise gefährliche Situation hin, die zu Sachschaden führen kann, wenn sie nicht gemieden wird.

Tipps und **Empfehlungen**

INFORMATION

... hebt nützliche Tipps und Empfehlungen sowie Informationen für einen effizienten und störungsfreien Betrieb hervor.

.. weist auf weitere Dokumente für einen sicheren Umgang hin.

Auf dem Produkt oder seinen Einzelteilen können Warnsymbole beschriftet sein.

Warnsymbole unbedingt beachten und umsichtig handeln, um Unfälle, Personen- und Sachschaden zu vermeiden.

... warnt vor gespeicherter Energie [zum Beispiel durch Federn].

... warnt vor Handverletzungen.

... weist darauf hin, dass die Betriebsanleitung des Produktes gelesen werden muss.

1.3 Definition von Begriffen

1.3.1 Lösestellung

Lösestellung bedeutet, dass das Spannmittel gelöst ist. Wenn sich das Spannmittel in gelöstem Zustand befindet, ist das Werkstück gleichzeitig auch freigesetzt.

1.3.2 Komplette Spannreserve

Komplette Spannreserve bedeutet, dass das Spannmittel ohne Werkstück gespannt ist. Der vollständige Hub wurde ausgenutzt und das Spannmittel befindet sich somit in Endlage der Spannreserve.

1.4 Haftungsbeschränkung

Alle Angaben und Hinweise in dieser Anleitung wurden unter Berücksichtigung der geltenden Normen und Vorschriften, des Stands der Technik sowie unserer langjährigen Erkenntnisse und Erfahrungen zusammengestellt.

Der Hersteller übernimmt keine Haftung für Schäden aufgrund:

- Nichtbeachtung der Anleitung
- Nichtbestimmungsgemäßer Verwendung
- Einsatz von nicht ausgebildetem Personal
- Eigenmächtiger Umbauten
- Technischer Veränderungen
- Verwendung nicht zugelassener Ersatzteile
- Verwendung von nicht zugelassenem Zubehör
- Einbau und Verwendung nicht originaler Spannelemente des Herstellers

Es gelten die im Liefervertrag eventuell vereinbarten Verpflichtungen, die Allgemeinen Geschäftsbedingungen sowie die Lieferbedingungen des Herstellers und die zum Zeitpunkt des Vertragsabschlusses gültigen gesetzlichen Regelungen.

1.5 Urheberschutz

Diese Anleitung ist urheberrechtlich geschützt und ausschließlich für interne Zwecke bestimmt.

Überlassung der Anleitung an Dritte, Vervielfältigungen in jeglicher Art und Form – auch auszugsweise – sowie Verwertung und / oder Mitteilung des Inhaltes sind ohne schriftliche Genehmigung des Herstellers außer für interne Zwecke nicht gestattet.

Zuwiderhandlungen verpflichten zu Schadenersatz. Weitere Ansprüche bleiben vorbehalten.

1.6 Lieferumfang

Im Lieferumfang des Produktes enthalten:

- MANOK plus
- Betätigungsschlüssel
- Schutzbüchse
- Betriebsanleitung

Zusätzlich benötigt und optional im Lieferumfang enthalten:

- Spannkopf
- Werkstückanschlag
- Wechselvorrichtung

1.7 Ersatz- und Zubehörteile

WARNUNG

Schwere Verletzungen durch falsche oder fehlerhafte Ersatzteile!

Nur originale Ersatzteile des Herstellers verwenden.

WARNUNG

Schwere Verletzungen durch falsche oder fehlerhafte Spannelemente!

Nur originale Spannelemente des Herstellers verwenden.

HINWEIS

Beschädigungen, Fehlfunktionen oder Totalausfall des Produktes oder der Werkzeugmaschine durch falsche oder fehlerhafte Ersatzteile!

Nur originale Ersatzteile des Herstellers verwenden.

HINWEIS

Beschädigungen, Fehlfunktionen oder Totalausfall des Produktes oder der Werkzeugmaschine durch falsche oder fehlerhafte Spannelemente!

Nur originale Spannelemente des Herstellers verwenden.

Ersatz- und Zubehörteile sind über Vertragshändler oder direkt beim Hersteller zu beziehen [siehe Kapitel »Kontakt«]. Grundsätzlich sind Verschleißteile und werkstückberührende Teile nicht Bestandteil der Gewährleistung.

1.8 Garantiebestimmungen

Die Garantiebestimmungen sind in den Allgemeinen Geschäftsbedingungen des Herstellers enthalten.

2 Sicherheit

Dieser Abschnitt gibt einen Überblick über alle wichtigen Sicherheitsaspekte für einen optimalen Schutz des Personals sowie für den sicheren und störungsfreien Betrieb.

2.1 Verantwortung des Betreibers

Das Produkt wird im industriellen Bereich eingesetzt. Der Betreiber des Produktes unterliegt daher den gesetzlichen Pflichten zur Arbeitssicherheit.

Neben den Sicherheitshinweisen in dieser Anleitung müssen die für den Einsatzbereich des Produktes gültigen lokalen Sicherheits-, Unfallverhütungs- und Umweltschutzvorschriften und die Anleitung der Werkzeugmaschine eingehalten werden.

Veränderungen am Produkt dürfen nicht durchgeführt werden. Die Verantwortung bei daraus resultierenden Personen- und / oder Sachschaden liegt vollumfänglich bei dem Betreiber.

Ausgenommen sind Wechselteile, die von HAINBUCH ausdrücklich zur selbstständigen Bearbeitung freigegeben wurden, dabei dürfen die vorgeschriebenen Grenzen niemals überschritten werden.

Die erreichbaren Spannkräfte können aufgrund des Wartungszustandes des Produktes [Schmierzustand und Verschmutzungsgrad] variieren [siehe Kapitel »Reinigung« und Kapitel »Spannkraftdiagramm«].

GEFAHR

Schwere Verletzungen durch herausgeschleuderte Teile bei unzureichender Spannkraft!

- Spannkraftmessung mit geeignetem Messgerät durchführen.
- Werkstück spannen und Klopfprobe durchführen.

2.2 Personalanforderungen

WARNUNG

Schwere Verletzungen durch unsachgemäßen Umgang mit dem Produkt bei unzureichender Qualifikation des Personals!

 Alle T\u00e4tigkeiten nur durch daf\u00fcr qualifizierte Fachkr\u00e4fte des jeweiligen Fachgebietes durchf\u00fchren lassen.

WARNUNG

Schwere Verletzungen durch unerlaubten Aufenthalt von unbefugten Personen im Arbeitsbereich!

- Unbefugte Personen vom Arbeitsbereich fernhalten.
- Im Zweifelsfall Personen ansprechen und diese aus dem Arbeitsbereich weisen.
- Die Arbeiten unterbrechen, solange sich Unbefugte im Arbeitsbereich aufhalten.

HINWEIS

Erheblicher Sachschaden durch unsachgemäßen Umgang mit dem Produkt bei unzureichender **Qualifikation des Personals!**

Alle Tätigkeiten nur durch dafür qualifizierte Fachkräfte des jeweiligen Fachgebietes durchführen lassen.

In dieser Anleitung werden folgende Qualifikationen für verschiedene Tätigkeitsbereiche benannt:

Fachkraft

Die Fachkraft ist aufgrund seiner fachlichen Ausbildung, Kenntnisse und Erfahrung sowie Kenntnis der einschlägigen Bestimmungen in der Lage, die ihm übertragenen Arbeiten auszuführen und mögliche Gefahren selbstständig zu erkennen und zu vermeiden.

Hydraulikfachkraft

Die Hydraulikfachkraft ist für den speziellen Aufgabenbereich, in dem sie tätig ist, ausgebildet und kennt die relevanten Normen und Bestimmungen.

Die Hydraulikfachkraft kann aufgrund ihrer fachlichen Ausbildung und Erfahrungen Arbeiten an hydraulischen Anlagen ausführen und mögliche Gefahren selbstständig erkennen und vermeiden.

Pneumatikfachkraft

Die Pneumatikfachkraft ist für den speziellen Aufgabenbereich, in dem sie tätig ist, ausgebildet und kennt die relevanten Normen und Bestimmungen.

Die Pneumatikfachkraft kann aufgrund ihrer fachlichen Ausbildung und Erfahrungen Arbeiten an pneumatischen Anlagen ausführen und mögliche Gefahren selbstständig erkennen und vermeiden.

Elektriker

Der Elektriker ist für den speziellen Aufgabenbereich, in dem er tätig ist, ausgebildet und kennt die relevanten Normen und Bestimmungen.

Der Elektriker kann aufgrund seiner fachlichen Ausbildung und Erfahrungen Arbeiten an elektrischen Anlagen ausführen und mögliche Gefahren selbstständig erkennen und vermeiden.

Auszubildende

Auszubildende dürfen nur unter Aufsicht und Leitung von Fachkräften des jeweiligen Fachgebietes an der Maschine beschäftigt werden.

Als Personal sind nur Personen zugelassen, von denen zu erwarten ist, dass sie ihre Arbeit zuverlässig ausführen. Personen, deren Reaktionsfähigkeit beeinflusst ist, zum Beispiel durch Drogen, Alkohol oder Medikamente, sind nicht zugelassen.

Bei der Personalauswahl die am Einsatzort geltenden altersund berufsspezifischen Vorschriften beachten.

2.3 Bestimmungsgemäße Verwendung

Das Produkt ist für den Einbau in eine CE-konforme Werkzeugmaschine mit trennender Schutzeinrichtung bestimmt.

Das Produkt dient ausschließlich dem in dieser Anleitung beschriebenen Verwendungszweck [siehe Kapitel »Verwendung«]. Zudem kann zwischen Hersteller und Betreiber ein erweiterter Verwendungszweck vertraglich vereinbart sein.

Das Produkt darf nur durch unterwiesene Fachkräfte des jeweiligen Fachgebietes montiert, bedient, gewartet und gereinigt werden [siehe Kapitel »Personalanforderungen«].

Das Produkt darf nur im Rahmen der angegebenen technischen Werte betrieben werden [siehe Kapitel »Allgemeine Angaben« und Kapitel »Betriebsbedingungen«].

Weiterhin dürfen die Einsatzgrenzen des Produktes niemals überschritten werden [siehe Kapitel »Einsatzgrenzen«].

Das Produkt ist regelmäßig zu warten [siehe Kapitel »Wartungsplan«].

Die Betriebssicherheit des Produktes ist bei bestimmungsgemäßer Verwendung unter Beachtung der einschlägigen Sicherheitsbestimmungen, soweit als vorhersehbar, gewährleistet.

Zur bestimmungsgemäßen Verwendung gehört auch die Einhaltung aller Angaben in dieser Anleitung.

Jede über die bestimmungsgemäße Verwendung hinausgehende oder andersartige Benutzung des Produktes gilt als Fehlgebrauch und kann zu gefährlichen Situationen führen.

GEFAHR

Schwere Verletzungen durch Fehlgebrauch des Produktes!

- Nur in CE-konformer Werkzeugmaschine mit trennender Schutzeinrichtung verwenden.
- Nur für den ausgewiesenen Verwendungszweck einsetzen [siehe Kapitel »Verwendung«].
- Verwendung des Produktes nur durch unterwiesene Fachkräfte des jeweiligen Fachgebietes [siehe Kapitel »Personalanforderungen«].
- Niemals die auf dem Produkt angegebenen technischen Daten überschreiten [siehe Kapitel »Allgemeine Angaben« und Kapitel »Betriebsbedingungen«].
- Die Einsatzgrenzen des Produktes dürfen niemals überschritten werden [siehe Kapitel »Einsatzgrenzen«].
- Das Produkt ist regelmäßig zu warten [siehe Kapitel »Wartungsplan«].
- Nur mit zugelassenen Anbauteilen und / oder Spannelementen verwenden.

GEFAHR

Schwere Verletzungen durch abgeschleuderte Teile bei Inbetriebsetzung ohne Werkstück!

- Produkt niemals ohne Werkstück in Rotation versetzen.
- Für die Inbetriebsetzung muss auf jeder verfügbaren Spannstelle ein passendes Werkstück gespannt werden.

HINWEIS

Sachschaden durch Fehlgebrauch des Produktes!

- Nur in CE-konformer Werkzeugmaschine mit trennender Schutzeinrichtung verwenden.
- Nur für den ausgewiesenen Verwendungszweck einsetzen [siehe Kapitel »Verwendung«].
- Verwendung des Produktes nur durch unterwiesene Fachkräfte des jeweiligen Fachgebietes [siehe Kapitel »Personalanforderungen«].
- Niemals die auf dem Produkt angegebenen technischen Daten überschreiten [siehe Kapitel »Allgemeine Angaben« und Kapitel »Betriebsbedingungen«].
- Die Einsatzgrenzen des Produktes dürfen niemals überschritten werden [siehe Kapitel »Einsatzgrenzen«].
- Das Produkt ist regelmäßig zu warten [siehe Kapitel »Wartungsplan«].
- Nur mit zugelassenen Anbauteilen und / oder Spannelementen verwenden.

Ansprüche jeglicher Art wegen Schäden aufgrund nicht bestimmungsgemäßer Verwendung sind ausgeschlossen.

Eine nicht bestimmungsgemäße Verwendung des Produktes liegt zum Beispiel vor

- wenn Werkstücke nicht ordnungsgemäß gespannt werden.
- wenn unter Missachtung der Sicherheitsvorschriften Personen ohne zusätzliche Schutzeinrichtungen am Produkt tätig sind, zum Beispiel um eingespannte Werkstücke zu bearbeiten.
- wenn das Produkt für nicht vorgesehene Maschinen, Werkstücke beziehungsweise Wechselteile eingesetzt wird.

2.4 Persönliche Schutzausrüstung

Bei der Arbeit ist das Tragen von persönlicher Schutzausrüstung erforderlich, um die Gesundheitsgefahren zu minimieren.

Die für die jeweilige Arbeit notwendige Schutzausrüstung ist während der Arbeit stets zu tragen.

Im Arbeitsbereich angebrachte Hinweise zur persönlichen Schutzausrüstung sind zu befolgen.

Grundsätzlich tragen

Bei allen Arbeiten sind grundsätzlich zu tragen:

Arbeitskleidung

ist eng anliegende Arbeitskleidung mit geringer Reißfestigkeit, mit engen Ärmeln und ohne abstehende Teile. Sie dient vorwiegend zum Schutz vor Erfassen durch bewegliche Maschinenteile. Keine Ringe, Ketten und sonstigen Schmuck tragen.

Sicherheitsschuhe

zum Schutz vor schweren herabfallenden Teilen und Ausrutschen auf rutschigem Untergrund.

Schutzbrille

zum Schutz der Augen vor umher fliegenden Teilen und Flüssigkeitsspritzern.

Haarnetz

zum Schutz der Haare vor Erfassung durch die rotierenden Teile der Werkzeugmaschine bei langen Haaren.

Beim Ausführen besonderer Arbeiten ist zusätzliche Schutzausrüstung erforderlich. Auf diese wird in den einzelnen Kapiteln dieser Anleitung gesondert hingewiesen. Im Folgenden werden diese zusätzlichen Schutzausrüstungen erläutert:

Schutzhandschuhe

zum Schutz der Hände vor zum Beispiel Reibung, Abschürfungen, Einstichen oder tieferen Verletzungen sowie vor Berührung mit heißen Oberflächen.

Schutzhelm

zum Schutz vor herabfallenden und umher fliegenden Teilen und Materialien.

2.5 Besondere Gefahren

Im folgenden Abschnitt sind Restrisiken benannt, die sich auf Grund des Einbaus des Produktes in eine Werkzeugmaschine ergeben. In jedem Fall müssen die Restrisiken, die auf Grund einer Risikobeurteilung der Werkzeugmaschine ermittelt wurden, durch den Betreiber benannt werden.

Die hier aufgeführten Sicherheitshinweise und die Warnhinweise in den weiteren Kapiteln dieser Betriebsanleitung beachten, um Gesundheitsgefahren zu reduzieren und gefährliche Situationen zu vermeiden.

Bewegte Bauteile

WARNUNG

Schwere Verletzungen durch Berühren von rotierenden und / oder bewegten Bauteilen!

- Abdeckungen während des Betriebes nicht öffnen.
- Während des Betriebes nicht an rotierende und / oder in bewegte Bauteile greifen.
- Spaltmaße bei bewegten Bauteilen beachten.
- Vor dem Öffnen der Abdeckungen sicherstellen, dass sich keine Teile mehr bewegen.

Hub

WARNUNG

Schwere Quetschverletzungen durch den Hub des Produktes!

Niemals in den Bereich der beweglichen Bauteile greifen.

Unzureichende Werkstückspannung

GEFAHR

Schwere Verletzungen durch herausgeschleuderte Teile bei unzureichender Werkstückspannung!

- Werkstückrohlinge dürfen nicht außerhalb der Durchmesserspannweite liegen.
- Die Werkstückspannung darf nicht außerhalb der definierten Grenzen erfolgen [siehe Kapitel »Einsatzgrenzen«].
- Die maximalen Leistungswerte dürfen nicht überschritten werden [siehe Kapitel »Allgemeine Angaben«].

Unzureichende Werkstückspannung

WARNUNG

Schwere Verletzungen durch Bruch der Einzelkomponenten des Produktes bei zu hohem Anzugsdrehmoment!

 Anzugsdrehmoment regelmäßig kontrollieren und gegebenenfalls anpassen.

Scharfkantige Teile

WARNUNG

Schwere Schnittverletzungen durch scharfkantige Teile und Grate!

- Die Montage von Einzelteilen darf nur von gualifizierten Fachkräften des jeweiligen Fachgebietes durchgeführt werden.
- Folgende Schutzausrüstung ist zusätzlich zur Grundausrüstung zu tragen:

2.6 CFK-Produkte

CFK-Produkte kommen bei hochdynamischen Werkzeugmaschinen zur Reduzierung des Gesamtmassenträgheitsmomentes zum Einsatz.

CFK-Produkte sind in der Produktbezeichnung mit dem Zusatz CFK beschriftet.

Bei den Carbonbauteilen des CFK-Produktes ist folgendes zu beachten:

WARNUNG

Schwere Verletzungen durch Verlust der Dauerfestigkeit des Produktes!

- Produkt auf sichtbare Beschädigungen oder erkennbare Verschleißerscheinungen an den Carbonbauteilen überprüfen!
- Bei Beschädigungen erst nach Rücksprache mit dem Hersteller weiterbearbeiten.

INFORMATION

Bei CFK-Produkten ist der Spindelflansch immer aus Aluminium.

Die abweichenden Anzugsdrehmomente für Aluminiumbauteile sind zu beachten [siehe Kapitel »Schraubenanzugsdrehmomente«].

2.7 Weitere Sicherheitshinweise

GEFAHR

Schwere Verletzungen durch herausgeschleuderte Werkstücke bei dem Lösen der Spannung im rotierenden Zustand!

■ Die Spannung des Werkstückes niemals im rotierenden Zustand lösen.

WARNUNG

Schwere Kopfverletzungen durch das Hineinbeugen in den Arbeitsraum der Maschine!

- Nur in den Arbeitsraum der Maschine hineinbeugen, wenn sich in diesem keine Schneidwerkzeuge oder spitzen Gegenstände befinden beziehungsweise diese abgedeckt sind.
- Niemals Körperteile unter potenziell herabfallende Teile im Arbeitsraum der Maschine bringen.

WARNUNG

Schwere Verletzungen durch das Erfassen von Körperteilen bei rotierender Spindel der Maschine!

- Niemals an das Produkt greifen solange die Spindel der Maschine rotiert.
- Vor Arbeiten am Produkt sicherstellen, dass das Anlaufen der Spindel der Maschine ausgeschlossen ist.

WARNUNG

Schwere Verletzungen durch Hineingreifen in Schlitze und Bohrungen!

Niemals in Schlitze beziehungsweise Bohrungen greifen.

WARNUNG

Schwere Verletzungen durch herabfallende Werkstücke bei dem Lösen der Spannung!

 Die Spannung des Werkstückes nur lösen, wenn das Werkstück gegen Herabfallen gesichert ist.

WARNUNG

Schwere Verletzungen durch die Verwendung beschädigter Produkte beziehungsweise deren Bauteile und Zubehörteile!

- Produkte beziehungsweise deren Bauteile und Zubehörteile regelmäßig auf sichtbare Beschädigungen prüfen [siehe Kapitel »Prüfungen« und Kapitel »Reinigung«].
- Verwendung beschädigter Produkte, deren beschädigter Bauteile und / oder den beschädigten Zubehörteilen ist untersagt.
- Schaden sofort dem Betreiber melden.
- Beschädigte Bauteile / Zubehörteile müssen durch originale Ersatzteile / Zubehörteile des Herstellers ausgetauscht werden.

VORSICHT

Schnittverletzungen durch scharfe Kanten und Grate bei Abnutzung beziehungsweise mehrmaliger Nacharbeit!

- Scharfe Kanten und Grate entfernen.
- Abgenutzte Bauteile bei Bedarf durch originale Ersatzteile des Herstellers austauschen.

HINWEIS

Schwerer Sachschaden der Werkzeugmaschine / des Produktes durch herausgeschleuderte Werkstücke bei dem Lösen der Spannung im rotierenden Zustand!

Die Spannung des Werkstückes nur im nicht rotierenden Zustand lösen.

HINWEIS

Sachschaden durch das Öffnen falscher Schrau-

Die mit Siegellack gesicherten Schrauben dürfen nicht geöffnet werden.

2.8 Schrauben

WARNUNG

Schwere Verletzungen durch Abschleudern von radial angebrachten Schrauben und Gewindestiften bei unsachgemäßer Montage / Handhabung!

- Die mit Siegellack gesicherten Schrauben dürfen nicht geöffnet werden.
- Am Produkt radial angebrachte Schrauben und Gewindestifte, die verklebt waren, müssen wieder mit handelsüblicher mittelfester Schraubensicherung gesichert und mit dem vorgeschriebenen Anzugsdrehmoment festgezogen werden [siehe Beschriftung oder Kapitel »Schraubenanzugsdrehmomente«]. Vor dem erneuten Einbau muss die Schraube und das Innengewinde gereinigt und entfettet werden.
- Radial angebrachte Schrauben und Gewindestifte, die weder mit Siegellack gesichert noch eingeklebt sind, müssen mit dem vorgeschriebenen Anzugsdrehmoment festgezogen werden [siehe Beschriftung oder Kapitel »Schraubenanzugsdrehmomente«].
- Im Zweifelsfall ist umgehend der Hersteller zu kontaktieren, um die weitere Vorgehensweise festzulegen.

2.9 Funktionalität

WARNUNG

Schwere Verletzungen durch starke Verschmutzung des Produktes!

Die Reinigungshinweise und -intervalle sind zwingend einzuhalten [siehe Kapitel »Reinigung«].

2.10 Umweltschutz

HINWEIS

Erheblicher Schaden für die Umwelt durch falschen Umgang oder falsche Entsorgung umweltgefährdender Stoffe!

- Gelangen umweltgefährdende Stoffe versehentlich in die Umwelt, sind sofort geeignete Maßnahmen zu ergreifen.
- Im Zweifel die zuständige Kommunalbehörde über den Schaden informieren.

Folgende umweltgefährdende Stoffe werden verwendet:

Schmier-, Hilfs- und Betriebsstoffe

Schmierstoffe wie Fette und Öle können giftige Substanzen enthalten. Sie dürfen nicht in die Umwelt gelangen.

Umweltgefährdende Stoffe müssen fachgerecht entsorgt werden [siehe Kapitel »Entsorgung«].

3 Technische Daten

3.1 Allgemeine Angaben

Baugröße	Spannbereich [mm]	Axialer Lösehub [mm]	Axiale Spannreserve [mm]	Radialer Öffnungshub im Ø $[mm]$	Radialer Reservehub im Ø [mm]	Gesamtgewicht $[kg]$	Abmaße [Länge x Breite x Höhe] $[mm]$	Maximaldrehzahl $[min^{-1}]$	Maximales Anzugsdrehmoment $M_A \ [Nm]$	Axiale Spannkraft $F_{axmax.}$ [kN]	Radiale Spannkraft $F_{rad\ max.}\ [kN]$	Wuchtgüte G in n Ebenen
52*	3-52	2,5	2,1	0,6	1,0	6,8	161 x 161 x 115	1000	75	40	94	4/1
65*	3-65	2,5	2,1	0,6	1,0	9,4	184 x 184 x 120	1000	90	45	105	4/1

^{*} Aluminium-Variante

Tabelle 1: Technische Daten

3.2 Leistungswerte

HINWEIS

Sachschaden an den verwendeten Produkten und / oder der Werkzeugmaschine durch Überschreiten der maximalen Leistungswerte!

- Die maximalen Leistungswerte des Produktes dürfen nicht überschritten werden.
- Von allen eingesetzten Produkten die niedrigsten der maximalen Leistungswerte nicht überschreiten.
- Produkt nur in Werkzeugmaschinen mit denselben Leistungswerten verwenden.

INFORMATION

Angaben zu den maximalen Leistungswerten befinden sich auf dem jeweiligen Produkt.

Sollten die Leistungswerte durch abrasiven Einfluss nicht mehr lesbar sein, sind diese der Betriebsanleitung zu entnehmen.

Die erreichbaren Betätigungskräfte können aufgrund des Wartungszustandes [Schmierzustand und Verschmutzungsgrad] des Produktes variieren [siehe Kapitel »Wartungsplan«].

Die erreichbaren Spannkräfte, resultierend aus den Betätigungskräften, müssen in regelmäßigen Zeitabständen überprüft werden. Dazu müssen statische Spannkraftmessungen durchgeführt werden.

Die gemessene Spannkraft muss sich im zugelassenen Bereich befinden [siehe Kapitel »Spannkraftdiagramm«].

3.3 Wuchtgüte

Das Produkt ist werksseitig gewuchtet [Wuchtgüte siehe Kapitel »Allgemeine Angaben«].

GEFAHR

Schwere Verletzungen durch herausgeschleuderte Teile bei fehlerhaft gewuchteten Produkten!

- Nicht rotationssymmetrische Werkstücke dürfen nicht beziehungsweise nur nach Rücksprachen mit dem Hersteller gespannt werden.
- Am Produkt angebrachte Wuchtschrauben und Wuchtgewichte dürfen keinesfalls entfernt werden.

HINWEIS

Sachschaden durch Bearbeitung mit fehlerhaft gewuchteten Produkten!

- Nicht rotationssymmetrische Werkstücke dürfen nicht beziehungsweise nur nach Rücksprachen mit dem Hersteller gespannt werden.
- Am Produkt angebrachte Wuchtschrauben und Wuchtgewichte dürfen keinesfalls entfernt werden.

3.4 Drehzahl

Das Produkt ist für den rotierenden Einsatz zugelassen. Die Maximaldrehzahl ist auf dem Produkt beschriftet [Maximaldrehzahl siehe Kapitel »Allgemeine Angaben«].

GEFAHR

Schwere Verletzungen durch abgeschleuderte Teile bei der unsachgemäßen Kombination mehrerer Produkte!

 Von allen angegebenen Maximaldrehzahlen der kombinierten Produkte ist immer die niedrigste Maximaldrehzahl einzuhalten.

GEFAHR

Schwere Verletzungen durch abgeschleuderte Werkstücke bei fliehkraftbedingtem Spannkraftverlust!

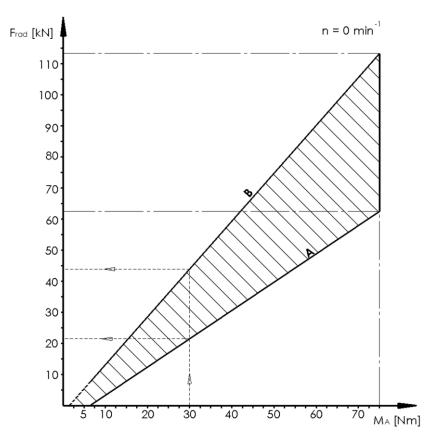
- Produkt niemals ohne Werkstück in Rotation versetzen.
- Bei mehreren Spannstellen auf jeder ein passendes Werkstück spannen.
- Bearbeitungskräfte gegebenenfalls anpassen.

3.5 Spannkraftdiagramm

Das Spannkraftdiagramm weist den zulässigen Bereich aus, in dem sich die radiale Spannkraft in Abhängigkeit der axialen Betätigungskraft bewegen darf.

In dem Spannkraftdiagramm sind die Einflüsse der Reibung und des Spanndurchmessers beinhaltet.

WARNUNG

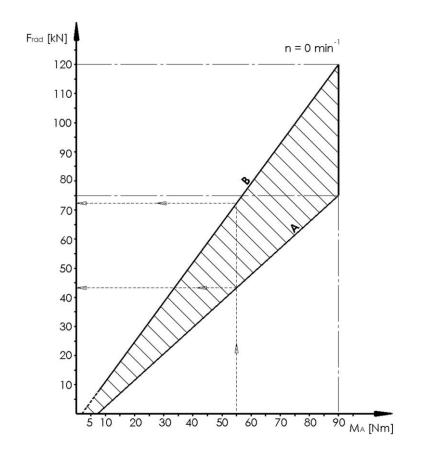

Schwere Verletzungen durch zu geringe Spannkraft!

- Die gemessenen Werte für die radiale Spannkraft
 Frad müssen in dem zugelassenen Bereich liegen.
- Liegen die ermittelten Werte außerhalb des zugelassen Bereiches, ist das Produkt zwingend zu reinigen [siehe Kapitel »Reinigung«] und eine erneute Spannkraftprüfung durchzuführen.
- Liegen die ermittelten Werte nach erfolgter Reinigung außerhalb des zugelassenen Bereiches ist der Hersteller zu kontaktieren.

3.5.1 Baugröße 52

Ablesebeispiel:

Bei einem Betätigungsmoment M_A von 30 Nm liegt die radiale Spannkraft F_{rad} im Bereich zwischen 22 kN und 44 kN.



Α unterer Grenzwert oberer Grenzwert В

3.5.2 Baugröße 65

Ablesebeispiel:

Bei einem Betätigungsmoment M_A von 55 Nm liegt die radiale Spannkraft F_{rad} im Bereich zwischen 44 kN und 72 kN.

unterer Grenzwert Α В oberer Grenzwert

3.6 Umrechnung Betätigungsmoment - Betätigungskraft

Um die richtigen Einstellungen zu treffen ist die Umrechnung von dem Betätigungsmoment auf die Betätigungskraft oder auch umgekehrt notwendig.

3.6.1 Nomenklatur

Kurzbe- zeichnung	Einheit	Erläuterung
F_{ax}	kN	Axiale Betätigungskraft
$F_{ax \ max}$	kN	Maximale axiale Betätigungskraft
M	Nm	Betätigungsmoment
M_{max}	Nm	Maximales Betätigungsmoment

Tabelle 2: Nomenklatur Umrechnung Betätigungsmoment – Betätigungskraft

3.6.2 Berechnung

Um das Betätigungsmoment zu ermitteln, das einzustellen ist um eine bestimmte Betätigungskraft zu erreichen gilt folgende Formel:

$$M = \frac{M_{max} * F_{ax}}{F_{ax max}}$$

INFORMATION

Das maximale Betätigungsmoment M_{max} und die maximale Betätigungskraft $F_{ax\;max}$ kann aus Kapitel »Allgemeine Angaben« entnommen werden.

Um die Betätigungskraft zu ermitteln, die bei dem eingestellten Betätigungsmoment ansteht gilt folgende Formel:

$$F_{ax} = \frac{F_{ax \ max} * M}{M_{max}}$$

INFORMATION

Das maximale Betätigungsmoment M_{max} und die maximale Betätigungskraft $F_{ax\;max}$ kann aus Kapitel »Allgemeine Angaben« entnommen werden.

3.6.3 Beispielrechnung

Spannkopf-Spannfutter

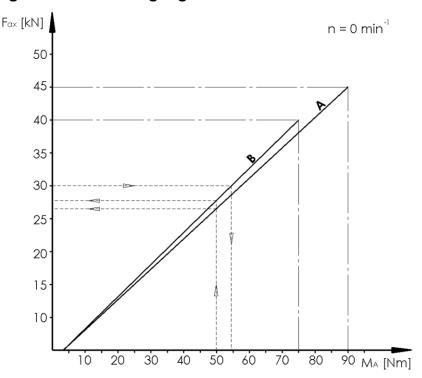
MANOK plus Größe 65

Betätigungskraft

■ Einzustellende Betätigungskraft $F_{ax} = 20kN$

Berechnung

$$M = \frac{M_{max} * F_{ax}}{F_{ax max}} = \frac{90Nm * 20kN}{45kN} = 40Nm$$


3.6.4 Diagramm Betätigungsmoment - Betätigungskraft

Ablesebeispiel 1:

Bei einem Betätigungsmoment von 50 Nm liegt die axiale Zugkraft für Baugröße 65 bei 26 kN und für Baugröße 52 bei 27 kN.

Ablesebeispiel 2:

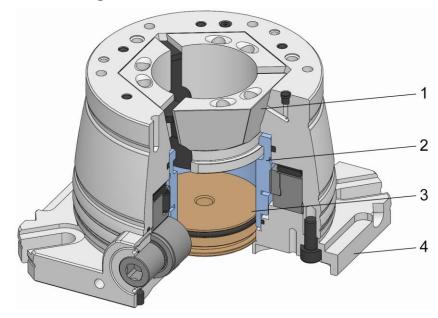
Bei einer erforderlichen axialen Betätigungskraft von 30 kN muss für Baugröße 52 ein Betätigungsmoment von 54 Nm aufgebracht werden.

- A Baugröße 65
- B Baugröße 52

3.7 Betriebsbedingungen

Angabe	Wert	Einheit
Temperaturbereich Umgebung	15 - 65	°C
Temperatur Werkstück	≤ 80	°C
Luftfeuchtigkeit	≤ 80	%

Tabelle 3: Betriebsbedingungen


3.8 Typenbezeichnung

Die Typenbezeichnung befindet sich auf dem Produkt und beinhaltet folgende Angaben:

- Hersteller
- Produktbezeichnung
- Identnummer [mit #-Symbol gekennzeichnet]
- Baujahr
- Maximaldrehzahl n [min⁻¹]
- maximale Betätigungskraft $F_{ax max}$ [kN]
- maximale Spannkraft $F_{rad max}$ [kN]
- maximales Betätigungsmoment M_{max} [Nm]

4 Aufbau und Funktion

4.1 Übersicht und Kurzbeschreibung

- Spannkopf [Spannelement]
- 2 Kupplung
- 3 Grundanschlag
- 4 Spannmittel

Das Spannmittel ist ein stationärer handbetätigter Spannstock.

Das Spannmittel ist als Anschlagsfutter ausgelegt.

Das Spannmittel ist mit dem Maschinentisch verschraubt.

Dieses wird mit Hilfe eines Betätigungsschlüssels manuell bedient.

Das Spannelement wurde mit einer geeigneten Wechselvorrichtung in das Spannmittel eingesetzt und spannt das zu bearbeitende Werkstück.

Der Werkstückanschlag kann auf den Grundanschlag aufgeschraubt, direkt verschraubt oder als Frontanschlag ausgeführt werden.

Das Spannmittel funktioniert nach dem Axzug-Prinzip.

Das Spannelement führt beim Spannen eine axiale Bewegung in Richtung des Werkstückanschlags aus.

Die bewegliche Kupplung zieht das Spannelement in den feststehenden Konus.

Das Werkstück wird somit fest auf den stehenden Werkstückanschlag gezogen.

Dadurch erhöht sich die Steifigkeit der Aufspannung.

4.2 Benötigtes Zubehör

4.2.1 Spannkopf

Der Spannkopf dient der Aufnahme des zu bearbeitenden Werkstücks. Dieser besteht aus harten Stahl- und Gummisegmenten, die durch eine Vulkanisation verbunden sind.

Je nach Anforderung des Werkstücks gibt es den Spannkopf in verschiedenen Baugrößen und mit unterschiedlichen Profilen und Bohrungen.

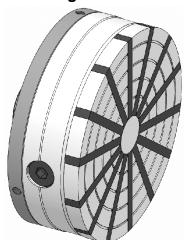
4.2.2 Werkstückanschlag

Der Werkstückanschlag wird mit einem Anschlagsmaß gemäß Kundenwunsch gefertigt.

4.2.3 Schutzbüchse

Die Schutzbüchse muss montiert werden, wenn der Grundanschlag demontiert ist, zum Beispiel bei Verwendung des Produktes als Durchgangsfutter.

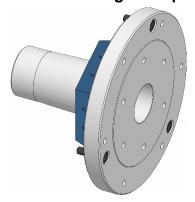
4.3 Optionales Zubehör


Das nachfolgende optionale Zubehör ist abhängig von der Baugröße des Produktes erhältlich.

4.3.1 Backenmodul

Das Backenmodul dient als Adaptionsspannmittel für den Einsatz von Spannbacken. Mit diesem lässt sich der Durchmesser-Spannbereich des Futters erweitern.

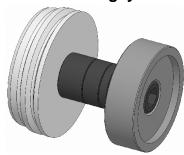
4.3.2 Magnetmodul


Das Magnetmodul dient als Adaptionsspannmittel für den Einsatz für ferromagnetische Werkstoffe zur Schleif- oder Drehbearbeitung.

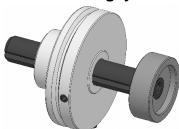
4.3.3 MANDO Adapt

Durch Adaption des MANDO Adapts wird eine Innenspannung des Werkstücks ermöglicht.

4.3.4 Morsekegel Adaption


Durch die Morsekegel Adaption werden Adaptionsmöglichkeiten über einen Morsekegelanschluss ermöglicht.

4.3.5 Stirnmitnehmer Adaption

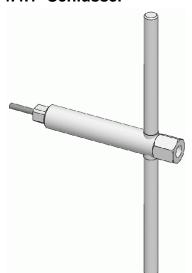

Durch Adaption des Stirnmitnehmers wird eine Bearbeitung des Werkstücks über dessen gesamte Länge ermöglicht.

4.3.6 Anschlagsystem vario part

Das Anschlagsystem vario part funktioniert nach demselben Prinzip wie ein Endmaßkasten und lässt sich in 1 mm Schritten mit Präzisionsscheiben in der Höhe abstimmen.

4.3.7 Anschlagsystem vario quick

Das Anschlagsystem vario quick arbeitet mit einem präzisen Trapezgewinde, über das sich die Einfuttertiefe schnell verstellen lässt.

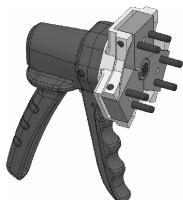

4.3.8 Drehmomentschlüsselsatz

Je nach Bestellumfang kann der Drehmomentschlüsselsatz mitgeliefert oder vom Kunden selbst gestellt werden.

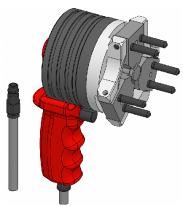
4.4 Sonderhilfsmittel

4.4.1 Schlüssel

Der Schlüssel dient zum Betätigen des Produktes.


4.4.2 Schlüssel ohne Griffstange

Der Schlüssel ohne Griffstange wird benötigt, wenn das Produkt auf einem Maschinentisch montiert ist.


Der Schlüssel dient zum Betätigen des Produktes.

4.4.3 Manuelle Wechselvorrichtung

Die Stifte der Wechselvorrichtung werden in die Wechselbohrungen im Spannkopf eingesetzt. Die Wechselvorrichtung wird mittels Handkraft betätigt. Je nach Baugröße ist die Wechselvorrichtung für eine Ein- oder Zweihandbetätigung ausgelegt. Der Spannkopf ist fest in die Wechselvorrichtung eingespannt und kann mit Hilfe der Wechselvorrichtung in das montierte Spannmittel eingesetzt werden.

4.4.4 Pneumatische Wechselvorrichtung

Die Stifte der Wechselvorrichtung werden in die Wechselbohrungen im Spannkopf eingesetzt. Die Wechselvorrichtung wird mittels Druckluft betätigt. Je nach Baugröße ist die Wechselvorrichtung für eine Ein- oder Zweihandbetätigung ausgelegt. Der Spannkopf ist fest in die Wechselvorrichtung eingespannt und kann mit Hilfe der Wechselvorrichtung in das montierte Spannmittel eingesetzt werden.

5 Verwendung und Einsatzgrenzen

5.1 Verwendung

Das Produkt ist ein Spannmittel, welches ausschließlich für das Spannen eines rotationssymmetrischen Werkstückes zum Zwecke dessen zerspanender Bearbeitung verwendet werden darf.

Die Betätigung des Produktes darf ausschließlich mit dem originalen Betätigungsschlüssel erfolgen.

Das vorliegende Produkt wurde neben dem generellen Einsatzbereich gegebenenfalls für einen speziellen, dokumentierten Einsatzfall konzipiert und entwickelt [siehe Spannsituationszeichnung oder Auftragsbestätigung].

Anderweitige Einsatzfelder bedürfen einer expliziten Freigabe durch den Hersteller.

Das Spannmittel kann als Anschlagsfutter verwendet werden. Es kann direkt auf dem Grundanschlag angeschlagen werden oder ein Werkstückanschlag montiert werden. Hierzu sind unterschiedliche Anbindungsstellen am Spannmittel vorgesehen.

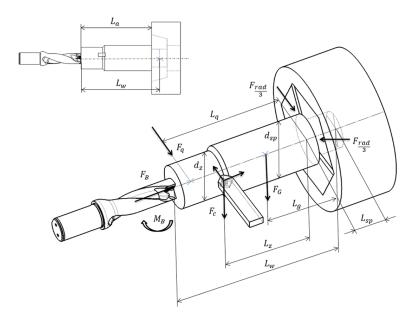
Das Spannmittel kann als Durchgangsfutter für die Stangenbearbeitung verwendet werden. Hierzu muss der Grundanschlag demontiert und die Schutzbüchse montiert werden.

Mit Hilfe von passenden Adaptionsspannmitteln des Herstellers kann das Spannmittel schnell auf eine andere Aufspannung umgerüstet werden.

5.2 Einsatzgrenzen

Im Bereich der zerspanenden Bearbeitung von Werkstücken sind den Spannkopf-Spannfuttern bei deren Einsatz Grenzen gesetzt.

Im Einzelnen sind vor dem Einsatz der Spannkopf-Spannfutter vier voneinander unabhängig zu bewertende Grenzen zu überprüfen.


5.2.1 Nomenklatur

Kurzbe- zeichnung	Einheit	Erläuterung
a_p	mm	Spantiefe Drehoperation
С	-	Berührungsfaktor
D	mm	Spanndurchmesser Spannkopf
D_B	mm	Bohrerdurchmesser
d_{sp}	mm	Spanndurchmesser
d_z	mm	Zerspanungsdurchmesser Drehoperation
f	mm	Vorschub / Umdrehung Drehoperation Vorschub / Schneide Bohroperation
F_{ax}	kN	Axiale Betätigungskraft
F_B	N	Vorschubkraft Bohroperation
F_c	N	Schnittkraft Drehoperation
$F_{c max}$	N	Maximale Schnittkraft Drehoperation
f_{fz}	N	Spannkraftzuschlag zur Rotationskom- pensation
F_G	N	Gewichtskraft Werkstück
f_n	mm	Vorschub / Umdrehung Bohroperation
$\overline{F_q}$	N	Querkraft
$F_{q max}$	N	Maximal zulässige Querkraft
F_{rad}	N	Radiale Spannkraft
F _{rad erf}	N	Erforderliche radiale Spannkraft
F_{Sk}	N	Spannkraft zur Verhinderung des Werkstückaushebelns
F_{SZ}	N	Spannkraft zur Aufnahme der Zer- spanungskräfte und -momente beim Dre- hen bzw. Bohren in Richtung der Futter- achse
F_t	kN	Reitstockkraft
$F_{t max}$	kN	Maximale Reitstockkraft
k_c	$\frac{N}{mm^2}$	Spezifische Schnittkraft

Kurzbe- zeichnung	Einheit	Erläuterung
L	mm	Futtergesamtlänge
L_a	mm	Ausspannlänge
L_g	mm	Abstand Schwerpunkt »Werkstück – Spannstelle«
L_q	mm	Abstand »radiale Bohrbearbeitung – Spannstelle«
L_{sp}	mm	Einspannlänge
$L_{sp\ min}$	mm	Mindestens erforderliche Einspannlänge
$L_{sp\ v}$	mm	Gesamtspannlänge
L_w	mm	Werkstücklänge
L_v	mm	Spannkopf-Vorbaulänge
L_z	mm	Abstand »Zerspanstelle – Spannstelle « beim Drehen
m	kg	Masse des Spannkopfes
M_B	Nmm	Drehmoment Bohroperation
M_q	Nm	Moment aufgrund Querkraft zur Futterachse
$M_{q max}$	Nm	Maximales Moment aufgrund Querkraft zur Futterachse
m_w	kg	Werkstückmasse
$m_{w \; max}$	kg	Maximale Werkstückmasse
n	min^{-1}	Drehzahl
P	-	Bearbeitungskenner
r_s	m	Abstand Massenschwerpunkt Spannkopf- Segment zur Drehachse des Futters
S	-	Spannkraft-Streubreitenfaktor
μ_a	-	Reib-Koeffizient in axialer Richtung
μ_t	-	Reib-Koeffizient in radialer Richtung

Tabelle 4: Nomenklatur Einsatzgrenzen

Zur graphischen Verdeutlichung der nachfolgend in den Rechenbeispielen verwendeten Kräfte und Momente dient folgende Skizze:

$$F_G[N] = m_w[kg] * 9.81 \left[\frac{m}{s^2} \right]$$

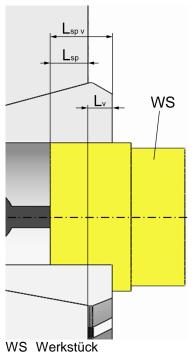
5.2.2 Erste Grenze [Werkstücklänge]

Die maximale Ausspannlänge, welche ohne Zuhilfenahme einer Lünette oder eines Reitstocks bearbeitet werden darf, liegt bei maximal dem 6-fachen des Spanndurchmessers.

5.2.3 Zweite Grenze [Werkstückmasse]

Die maximale Werkstückmasse ist abhängig von der Baugröße des Spannkopf-Spannfutters [siehe Tabelle 5]. [Werte gelten für Einzelwerkstücke; für Stangenbearbeitung gelten gesonderte Grenzwerte]

Baugröße des Spannkopf-	Maximale Werkstückmasse $m_{w max}[kg]$	
-	Horizontaler Einsatz	Vertikaler Einsatz
26	8	12
40	18	22
52	28	40
65	40	60
80	50	75
100	65	100
125	80	120


Tabelle 5: Maximale Werkstückmasse

5.2.4 Dritte Grenze [Einspannlänge]

Die Einspannlänge darf nicht kleiner sein als die mindest erforderliche Einspannlänge $L_{sp} \ge L_{sp\ min}$.

Die Spannkopf-Vorbaulänge L_v bleibt dabei vollkommen unberücksichtigt.

Bei abgesetzten Spannbohrungen [Kopfbohrung] ist ein eventueller Freistich des Spannkopfes bei der Ermittlung der Spannlänge zu berücksichtigen.

Die Einspannlänge berechnet sich wie folgt:

$$L_{sp} = L_{sp \ v} - L_v$$

Generell gilt $L_{sp} \ge 0.08 * d_{sp}$

Des Weiteren gilt zusätzlich:

 $L_{sp} \ge 2.8mm$ [bei Einsatz von Spannköpfen mit glatter Spannbohrung]

 $L_{sp} \ge 13mm$ [bei Einsatz von Spannköpfen mit Längsund Querrillen]

Beim Einsatz von Spannköpfen mit einem geschlossenen ersten Stollen gelten davon abweichende Angaben, welche noch höher liegen können. Diese Angaben sind im Bedarfsfall vom Hersteller zu erfragen.

 $L_{sp} \ge 7mm$ [bei Einsatz von Spannköpfen mit Z-Riffelung]

 $L_{sp} \ge 5mm$ [bei Einsatz von Spannköpfen mit F-Riffelung]

Sollte in der vorliegenden Spannsituationszeichnung eine davon abweichende, kürzere Spannlänge von HAINBUCH vorgesehen sein, wurde diese anhand der ganz spezifischen Randbedingungen dieses Einzelfalls geprüft und für ausreichend befunden.

5.2.5 Vierte Grenze [Kräfte]

Die Ermittlung der von außen wirkenden Kräfte auf das Werkstück ist in nachfolgendem Berechnungsansatz erläutert.

Dabei gilt es zu ermitteln, ob

- die notwendige Spannkraft zur Aufnahme der äußeren Kräfte und Drehmomente durch das Spannmittel aufgebracht werden können.
- das Spannmittel durch die äußeren Kräfte keinen sichtbaren oder unsichtbaren Schaden nimmt.

Bei den auf den Spannkopf und letztlich auf das Spannfutter wirkenden Kräfte und Momente handelt es sich im Wesentlichen um

- a) aufzunehmende Bearbeitungskräfte und -momente
- b) die Gewichtskraft des Werkstücks selbst,
- Zentrifugalkräfte aufgrund des Gewichts des Spannkopfes
- d) gegebenenfalls Reitstockkräfte

Grundsätze für die von außen wirkenden Kräfte

WARNUNG

Schwere Verletzungen durch Nichterfüllen der Grundsätze für eine sichere Zerspanung!

 Für eine sichere Zerspanung müssen jederzeit die Grundsätze eingehalten werden.

Folgende Grundsätze sind zu beachten:

1. Grundsatz

 $F_{rad} \geq F_{rad\,erf}$

UND

2. Grundsatz

 $F_t \leq F_{t max}$

UND

3. Grundsatz

 $F_c \leq F_{c max}$

[Relevant bei Drehbearbeitung beziehungsweise axialer Bohroperation.]

UND

4. Grundsatz

$$F_q \leq F_{q max}$$

[Relevant bei radialer, auf das Zentrum gerichteter Bohroperation beziehungsweise bei äquivalenter Belastung. Sind radiale Kräfte und die daraus resultierenden Momente nicht auf das Zentrum gerichtet, kann dies über eine Quasi-Schnittkraft außerhalb des Zentrums berücksichtigt werden.]

UND

5. Grundsatz

$$M_q \leq M_{q max}$$

[Relevant bei radialer, auf das Zentrum gerichteter Bohroperation beziehungsweise bei äquivalenter Belastung. Sind radiale Kräfte und die daraus resultierenden Momente nicht auf das Zentrum gerichtet, kann dies über eine Quasi-Schnittkraft außerhalb des Zentrums berücksichtigt werden.] Bei diesen Grundsätzen wird davon ausgegangen, dass das Spannkopf-Spannfutter für eine Drehbearbeitung beziehungsweise einer axialen oder radialen Bohrbearbeitung am Werkstück eingesetzt wird. Es ist nicht grundsätzlich ausgeschlossen, das Spannkopf-Spannfutter auch für andere Bearbeitungsaufgaben wie zum Beispiel Umfangsfräsen oder Tauchfräsen einzusetzen. Dabei ist jedoch vom Betreiber sicherzustellen, dass die dabei auftretenden Kräfte und Momente mit den zulässigen äquivalenten Werten einer Drehbeziehungsweise Bohrbearbeitung verglichen werden, um die Zulässigkeit des Einsatzfalls zu überprüfen.

5.2.5.1 Zu Grundsatz 1: $F_{rad} \ge F_{rad\ erf}$

Ermittlung der erforderlichen Spannkraft

Zur Ermittlung der erforderlichen Spannkraft $F_{rad\ erf}$ unter Drehzahl gelten die nachfolgenden Gleichungen.

Die Gleichungen gelten sowohl für Längsdreh- als auch Plandrehoperationen. Bohroperationen auf der Stirnseite der Werkstücke können auch berechnet werden. Überlagerte, simultane Bearbeitungen zum Beispiel durch mehrere Werkzeuge beziehungsweise Revolver sind auch rechnerisch zu überlagern, das heißt die erforderlichen Radialspannkräfte der Einzelbearbeitungen sind zu addieren.

Axiale Bohr- und Drehbearbeitungen überlagern sich jedoch selten, da in der Regel diese aufgrund gegenläufiger Drehrichtungen nicht simultan ablaufen können.

Für die Berechnung ist der Punkt mit den höchsten Kräften, das heißt der ungünstigste Moment der Bearbeitung rechnerisch zugrunde zu legen. Im Zweifelsfall bedarf es einer Überprüfung von mehreren Schneideneingriffssituationen, um die ungünstigste zu erfassen.

Sollen radiale Bohroperationen vorgenommen werden, kommt neben der Ermittlung der erforderlichen, radialen Spannkraft $F_{rad\ erf}$, vor allem die Überprüfung der eingeleiteten Querkraft F_q und des daraus resultierenden Moments M_q eine zentrale Rolle zu.

Streubreiten der Spannkraft

Der Spannkraftstreubreitenfaktor S ist der nachfolgenden Tabelle zu entnehmen.

Die Werte für den Streubreitenfaktor gelten, wenn ein regelmäßig gewarteter und geschmierter Betriebszustand entsprechend Bedienungsanleitung vorliegt.

Sofern die radiale Spannkraft vor jeder Inbetriebsetzung sowie kontinuierlich alle 100 Spannungen mit einer dafür geeigneten Messeinrichtung gemessen wird, kann mit dem ausgewiesenen, reduzierten, »verifizierten« Spannkraftstreubreitenfaktor gearbeitet werden.

Baugröße des Spannkopf- Spannfutters	Radiale Spannreserve im Durchmes- ser [mm]	Spannkrafts- treubreiten- faktor <i>S</i>	Spannkrafts- treubreiten- faktor S »veri- fiziert«
26	0,6	2,0*	1,3
40	0,8	1,7*	1,3
52	1,0	1,7*	1,3
65	1,0	1,6*	1,3
80	1,0	1,6*	1,3
100	1,5	1,6	1,3
125	2,5	1,6	1,3

Sofern aufgrund maßgenauer Werkstücke die radiale Spannreserve des Spannkopf-Spannfutters nur bis zu einer Grenze von 50% ausgenutzt wird, kann der Spannkraftstreubreitenfaktor um den Faktor 0,85 reduziert werden [Beispiel: Baugröße 52: S = 1,7 * 0.85 = 1.45

Tabelle 6: Streubreiten der Spannkraft

Berührungsfaktor

Der Berührungsfaktor ist je nach Berührungsform / -fall den nachfolgenden Tabellen zu entnehmen.

Passsitz	Sattelsitz	Kantensitz
Der Spanndurchmesser des Spannkopfs entspricht dem Spanndurchmesser am Werk- stück.	Der Spanndurchmesser des Spannkopfs ist größer als der Spanndurchmesser am Werk- stück.	Der Spanndurchmesser des Spannkopfs ist kleiner als der Spanndurchmesser am Werk- stück.
SP WS	SP WS	SP WS

WS Werkstück

SP Spannelement

Tabelle 7: Berührungsformen / -fall

		Berührungsform	
Berührungsfaktor c	Bearbeitungs- bedingungen	Pass- und Sat- telsitz	Kanten- sitz
Clatter Spannkonf	Trocken	1,1	1,0
Glatter Spannkopf	Nass* / MMS**	1,3	1,2
Spannkopf mit	Trocken	1,1	1,0
Längs- und Querrillen	Nass* / MMS**	1,3	1,2
Spannkopf mit	Trocken	1,0	1,0
Z- oder F-Riffelung	Nass* / MMS**	1,2	1,1

Nassbearbeitung: Verwendung von Kühlschmierstoff [KSS]

Tabelle 8: Berührungsfaktor

Spezifische Schnittkräfte

Entsprechend der relativ groben Unterteilung der Werkstoffe handelt es sich um Anhaltswerte. Dadurch können teilweise größere Abweichungen zu den realen Werten vorliegen.

Für abweichende Werkstückstoffe bzw. bei Bearbeitungsaufgaben im Grenzbereich des Spannmittels sind die jeweiligen k_c -Werte des zu bearbeitenden Werkstückstoffs genau zu ermitteln beziehungsweise vom Werkstofflieferanten zu erfragen.

Bei Bohroperationen mit zweischneidigem Werkzeug gilt:

$$f = \frac{f_n}{2}$$

Werkstückstoffe		Spezifische Schnittkräfte	Spezifische Schnittkräfte	Spezifische Schnittkräfte
Bezeichnung	DIN [ISO]	$k_c \left[rac{N}{mm^2} ight]$ bei $f = 0, 1mm^*$	$k_c \left[rac{N}{mm^2} ight]$ bei $f = 0,5mm^{**}$	$k_c\left[rac{N}{mm^2} ight]$ bei $f=1,0mm^{***}$
Grauguss	Zum Beispiel EN- GJL-250	1980	1260	900
Kugelgraphitguss [ungehärtet]	Zum Beispiel EN-GJS-400-15	2120	1190	1060
unlegierte/niedrig le- gierte Baustähle [mit durchschnittlicher Festigkeit] / Einsatz- stähle [ungehärtet]	Zum Beispiel S235JR [1.0037] S275JR [1.0044] Ck10 [1.1121] 16MnCr5 [1.7131] 18CrNi8[1.5920]	2920	1840	1500
unlegierte/niedrig le- gierte Baustähle [un- gehärtet, mit höhe- rer Festigkeit]	S355J2G3 [1.0570] E360 [1.0070]	3350	2000	1600

^{**} MMS [MQL]: Einsatz von Minimalmengenschmierung

Werkstückstoffe		Spezifische Schnittkräfte	Spezifische Schnittkräfte	Spezifische Schnittkräfte	
Bezeichnung	DIN [ISO]	$k_c \left[rac{N}{mm^2} ight]$ bei $f=0,1mm^*$	L 2	$k_c \left[rac{N}{mm^2} ight]$ bei $f=1,0mm^{***}$	
Vergütungsstähle [vorvergütet]	C45 [1.0503] C60 [1.0601] 42CrMo4 [1.7225] 34CrNiMo6 [1.6582]	2850	1960	1660	
unlegierte/niedrig le- gierte Werkzeug- stähle [ungehärtet]	C105W1 [1.1545]	3100	2100	1690	
Automatenstähle	35S20 [1.0726] 60S20 [1.0728]	1700	1480	1400	
rostfreie Stähle		3600	2450	2100	
Gehärtete Stähle		4800			
Aluminium Knetle- gierung <16%Si		1340	900	750	
Aluminium Gussle- gierung <16%Si		1520	1000	850	
Messing		1300	850	700	

Für Vorschübe zwischen 0,05mm und 0,1mm ist der Wert bei f=0,1mm mit 20% Zuschlag zu verwenden.

Tabelle 9: Spezifische Schnittkräfte

Für Vorschübe zwischen 0,1mm und 0,5mm ist zu interpolieren.

Für Vorschübe zwischen 0,5mm und 1,0mm ist zu interpolieren. Für Vorschübe >1,0mm sind die Werte der Spalte f=1,0mm zu verwenden.

Reibkoeffizienten

Bei Werkstücken eines von Stahl abweichenden Werkstoffs sind die ausgewiesenen Werte mit den unten angegebenen Korrekturwerten zu multiplizieren.

Für gehärteten Stahl als Werkstückstoff gelten generell die Werte der glatten Spannköpfe bei geschliffenen Werkstückoberflächen.

HINWEIS

Sachschaden durch Einsatz des falschen Spannkopfes bei dem Spannen gehärteter Werkstoffe!

- Ein Spannen von gehärteten Werkstoffen oder von Werkstoffen mit sehr hohen Festigkeitswerten $R_m > 1300 \left[\frac{N}{mm^2} \right]$ ist nur zulässig mit Spannköpfen der Ausführung glatt, längs- und quergerillt!
- Andere Spannkopfausführungen können Schaden nehmen und Ihre Fähigkeit verlieren, höhere Reibkoeffizienten bei weichen Werkstoffen zu erzielen.

	Spannfläche			
Werkstückoberflä- che	SP WS	SP WS	SP WS	SP WS
	Glatter Spannkopf	Längs- und quergerillter Spannkopf	Spannkopf mit Z-Riffelung	Spannkopf mit F-Riffelung
Feingeschlichtet, geschliffen	$\mu_t = 0.06$ $\mu_a = 0.08$	$\mu_t = 0.07$ $\mu_a = 0.09$	$\mu_t = 0.15$ $\mu_a = 0.20$	$\mu_t = 0.17$ $\mu_a = 0.22$
Geschlichtet bis geschruppt	$ \mu_t = 0.10 \mu_a = 0.13 $	$ \mu_t = 0.11 \mu_a = 0.15 $	$\mu_t = 0.18$ $\mu_a = 0.25$	$\mu_t = 0.23$ $\mu_a = 0.28$
Roh beziehungs- weise unbearbeitet	$ \mu_t = 0.14 \mu_a = 0.16 $	$\mu_t = 0.16$ $\mu_a = 0.18$	$\mu_t = 0.20$ $\mu_a = 0.28$	$\mu_t = 0.25$ $\mu_a = 0.30$
	Alumi	nium-Legierungen	= 0,97	
Werkstoff-Korrektur- werte		Messing	= 0,92	
		Grauguss	= 0,80	
	WS Werks	tück		

SP Spannelement

Tabelle 10: Reib-Koeffizient für Stahlwerkstücke

Spannkopf-Masse m[kg] und Abstand des Massenschwerpunkts der Spannkopf-Segmente zur Drehachse $r_s[m]$

Spannkopf-Größe	Abstand Massenschwerpunkt $r_s[m]$ in kleinster Stellung	Spannkopf-Masse $m[kg]$
26	0,013	0,23
40	0,018	0,70
52	0,022	1,00
65	0,026	1,65
80	0,032	2,10
100	0,040	4,30
125	0,062	8,00

Tabelle 11: Spannkopf-Masse und Abstand des Massenschwerpunkts der Spannkopf-Segmente zur Drehachse

Ermittlung der erforderlichen Spannkraft

INFORMATION

S aus Tabelle 6

c aus Tabelle 8

k_c aus Tabelle 9

 μ_a , μ_t aus Tabelle 10

 r_s , m aus Tabelle 11

ı

$$F_{rad\ erf} = S*c*(1.6*(F_{sz} + F_{sk}) + F_{fz})$$

INFORMATION

Der Faktor 1,6 berücksichtigt mögliche auftretende Kraftübertragungsschwankungen.

Ш

$$F_{SZ} = 1.3 * \sqrt{\left(\frac{F_c * d_z + 2 * M_B}{d_{SP} * \mu_t}\right)^2 + \left(\frac{F_c + F_B}{\mu_a}\right)^2}$$

Drehbearbeitung [innen und außen]

$$F_c = 1.3 * a_p * f * k_c$$

Bohrbearbeitung [Vollbohren, zweischneidiges Werkzeug, zentrisch in Richtung der Werkstückachse]

$$F_B = 0.45 * D_B * f_n * k_c$$

$$M_B = \frac{f_n * D_B^2 * k_c}{5700}$$

ñ

INFORMATION

Bei der Berechnung der Zerspankräfte ist ein Stumpfungsgrad, welcher einer Verschleißmarkenbreite von 0.3mm entspricht, berücksichtigt.

Ш

$$F_{sk} = \frac{\left(0.27*\frac{L_Z}{d_{sp}} + 0.63\right)*\sqrt{\left(F_c*L_Z + F_G*L_g\right)^2 + \left(F_c*P\right)^2}}{0.5*\left(0.67*\left(1.9*L_{sp} - 4.5mm\right) + \mu_a*d_{sp}\right)}$$

Längsdrehen

$$P = \frac{d_z}{2}$$

Plandrehen / Einstechen

$$P = L_z$$

Wird das Werkstück mit einem Reitstock abgestützt, reicht es aus, mit 20% des errechneten F_{sk} -Wertes weiter zu rechnen.

I۷

$$F_{fz} = m * r_{s} * \left(\frac{\pi * n}{30}\right)^{2}$$

Entsprechend des eingangs definierten Grundsatzes bedeutet dies, dass die radiale Spannkraft des Spannkopf-Spannfutters mindestens der errechneten, erforderlichen radialen Spannkraft $F_{rad\ erf}$ entsprechen muss, um diese Bearbeitungsaufgabe unter Einsatz des Spannkopf-Spannfutters lösen zu können.

Falls diese Bedingung nicht erfüllt würde, wäre das Spannkopf-Spannfutter nicht geeignet. Die Bearbeitungsaufgabe dürfte nicht ausgeführt werden.

Bei der Spannung und Bearbeitung von Werkstücken mit größeren Rund- und Planlauffehlern ist zu beachten, dass der Spanquerschnitt stark schwankt. Die daraus resultierende, punktuelle Erhöhung der Schnittkraft ist gesondert zu berücksichtigen.

Ermittlung der erforderlichen Spannkraft bei radialer Bohrbearbeitung

Bei radialen, auf das Zentrum gerichteten Bohroperationen erfolgt die Ermittlung der radialen Spannkraft $F_{rad\ erf}$ ebenfalls nach dem Ansatz

$$F_{rad\ erf} = S * c * (1.6 * (F_{SZ} + F_{Sk}) + F_{fz})$$

wobei allerdings die Komponenten $F_{sz}=0$ und $F_{fz}=0$ zugrunde gelegt werden können, was zu einer vereinfachten Form [reine Querkraft] führt:

$$F_{rad\ erf} = S * c * 1.6 * F_{sk}$$

Die Ermittlung von F_{sk} kann bei radial zur Spannmittelachse angreifenden Bohrbearbeitung analog zu Formel III wie folgt berechnet werden:

$$F_{sk} = \frac{\left(0.27*\frac{L_z}{d_{sp}} + 0.63\right)*\left(F_q*L_z + F_G*L_g\right)}{0.5*\left(0.67*\left(1.9*L_{sp} - 4.5mm\right) + \mu_a*d_{sp}\right)}$$

Für die Berechnung von F_q siehe Kapitel »Zu Grundsatz 4: $F_q \le F_{q max}$ «.

$$F_q = F_B = 0.45 * D_B * f_n * k_c$$

5.2.5.2 Zu Grundsatz 2: $F_t \leq F_{t max}$

Bei dem Einsatz eines Reitstocks ist aufgrund der zusätzlichen Spreizkraft auf das Spannkopf-Spannfutter die zulässige maximale Reitstockkraft begrenzt auf folgende Werte entsprechend der Baugröße des Spannkopf-Spannfutters:

Baugröße des Spannkopf- Spannfutters	$F_{tmax}[kN]$
26	2
40	4
52	6
65	8
80	8
100	8
125	8

Tabelle 12: Maximal zulässige Reitstockkraft

HINWEIS

Schwerer Sachschaden an Spannmittel und Werkzeugmaschine durch nicht angepasste Kräfte!

■ Die Summe aus eingestellter Reitstockkraft und axialer Spannkraft beim Spannvorgang muss durch die Lösekraft überdrückt werden.

Bei dem Einsatz eines Reitstocks ist durch Verwendung eines Anschlags im Spannkopf-Spannfutter sicherzustellen, dass das Werkstück nicht axial verschoben wird.

5.2.5.3 Zu Grundsatz 3: $F_c \leq F_{c max}$

Die Schnittkraft bei Drehoperationen kann vor allem bei kurzen Auskraglängen des Werkstücks sehr hohe Werte annehmen, obwohl die Bearbeitung grundsätzlich noch ohne Schlupf oder Aushebeln aus der Spannung möglich wäre. Daher muss auch diese entsprechend der Baugröße des Spannkopf-Spannfutters limitiert werden, um eine Beschädigung des Spannkopf-Spannfutters zu vermeiden.

Baugröße des Spannkopf-Spann- futters	Bis Futtergesamt-länge $L[mm]$	$F_{cmax}[N]$
26	< 120	1600
40	< 125	3200
52	< 125	3600
65	< 140	5000
80	< 140	6000
100	< 160	8000
125	< 200	12000

Tabelle 13: Maximal zulässige Schnittkraft

Bei verlängerten Futterausführungen ist die maximal zulässige Schnittkraft im Verhältnis der Futterlängen zu reduzieren. Zum Beispiel Baugröße 26 mit L=150mm

$$\frac{120mm}{150mm} * 1600N = 1280N$$

5.2.5.4 Zu Grundsatz 4: $F_q \le F_{q max}$

Bei Bohrbearbeitungen radial zur Werkstückachse treten durch die Vorschubkraft des Werkzeugs Querkräfte auf, welche letztendlich auf das Spannkopf-Spannfutter wirken. Diese Belastung beim Bohren ist als äquivalent zur Schnittkraft beim Drehen zu sehen und muss daher ebenfalls begrenzt werden. Die zulässigen Maximalwerte sind nachfolgender Tabelle zu entnehmen.

Auftretende Vorschubkraft beim Bohren F_B [Querkraft] [Vollbohren, zweischneidiges Werkzeug, Bearbeitungsrichtung 90° quer zur Futterachse]

$$F_q = F_B = 0.45 * D_B * f_n * k_c$$

INFORMATION

 k_c aus Tabelle 9

Baugröße des Spannkopf-Spann- futters	Bis Futtergesamt-länge $L[mm]$	$F_{q max}[N]$
26	< 120	1800
40	< 125	3600
52	< 125	4200
65	< 140	6000
80	< 140	7200
100	< 160	9000
125	< 200	13000

Tabelle 14: Maximal zulässige Querkraft

Bei verlängerten Futterausführungen ist die maximal zulässige Querkraft im Verhältnis der Futterlängen zu reduzieren. Zum Beispiel Baugröße 26 mit L=150mm

$$\frac{120mm}{150mm} * 1800N = 1440N$$

5.2.5.5 Zu Grundsatz 5: $M_q \le M_{q max}$

Bei Bohrbearbeitungen radial zur Werkstückachse erzeugt die unter Grundsatz 4 überprüfte Querkraft ein zusätzliches Drehmoment M_q auf den Spannkopf beziehungsweise das Spannfutter. Auch dieses Moment darf nicht grenzenlos steigen, ohne dass das Spannkopf-Spannfutter Schaden nimmt, obwohl vielleicht die Spannung das Werkstück trotzdem noch sicher spannen würde. Die nachfolgende Tabelle weist wiederum die zulässigen Maximalwerte aus.

Auftretendes Drehmoment ${\it M_q}$ durch Einleitung der Querkraft ${\it F_q}$

$$M_q = F_q * L_q$$

Baugröße des Spannkopf-Spann- futters	Bis Futtergesamt- länge $L[mm]$	$M_{q max}[Nm]$
26	< 120	90
40	< 125	180
52	< 125	210
65	< 140	300
80	< 140	360
100	< 160	450

Baugröße des Spannkopf-Spann- futters	Bis Futtergesamt- länge $L[mm]$	$M_{q max}[Nm]$
125	< 200	650

Tabelle 15: Maximal zulässiges Moment aufgrund Querkraft

Bei verlängerten Futterausführungen ist das maximal zulässige Moment im Verhältnis der Futterlängen zu reduzieren. Zum Beispiel Baugröße 26 mit L=150mm

$$\frac{120mm}{150mm} * 90Nm = 72Nm$$

5.2.6 Beispielrechnung

Angewendet auf ein konkretes Beispiel

Längsdrehen einer abgesetzten Welle aus 16MnCr5 [Spanndurchmesser roh] fliegend in horizontaler Lage.

Werkstückdaten

- Spanndurchmesser $d_{sp} = 60mm$
- Werkstücklänge $L_w = 150mm$ [151,5mm roh]
- Zerspanungsdurchmesser Drehoperation $d_z = 57,0mm$
- Werkstückmasse $m_w = 3.3kg$

$$\rightarrow F_G = m_w * 9.81 \frac{m}{s^2}$$

$$\rightarrow F_G = 33N$$

Prozessdaten

- Drehzahl $n = 800min^{-1}$
- Vorschub f = 0.25mm
- Spantiefe $a_n = 1.5mm$
- Einsatz von Kühlschmierstoff
- Gesamtspannlänge $L_{sp v} = 20mm$

Spannkopf-Spannfutter

- TOPlus Axzug Größe 65
- Verwendeter Spannkopf
 - Glatt
 - Spanndurchmesser Spannkopf D = 60mm
 - Vorbaulänge $L_v = 3mm$

Detailbetrachtung

Die erste Bedingung, dass die Ausspannlänge maximal dem sechsfachen des Spanndurchmessers entsprechen darf, ist erfüllt.

Die zweite Bedingung, dass die Werkstückmasse m_w 40kg bei Baugröße 65 des Spannkopf-Spannfutters nicht übersteigen darf, ist erfüllt.

Die dritte Bedingung, dass das Werkstück mindestens $0.08*d_{sp}=0.08*60mm=4.8mm$ eingespannt sein muss, ist mit

Einspannlänge $L_{sp} = L_{sp v} - L_v = 20mm - 3mm = 17mm$ mehr als erfüllt.

Um die vierte Bedingung zu überprüfen, ist es als erstes nach Grundsatz 1 erforderlich, die radial erforderliche Spannkraft zu ermitteln.

ñ

INFORMATION

S aus Tabelle 6

c aus Tabelle 8

 k_c aus Tabelle 9 [interpoliert für f = 0.25mm]

 μ_a , μ_t aus Tabelle 10

 r_s , m aus Tabelle 11

ı

$$F_{rad\;erf} = S * c * (1.6 * (F_{SZ} + F_{Sk}) + F_{fz})$$

aus Tabelle 6: S = 1,6

aus Tabelle 8: c = 1.3

$$F_{rad\ erf} = 1.6 * 1.3 * (1.6 * (F_{SZ} + F_{Sk}) + F_{fz})$$

П

$$F_{SZ} = 1.3 * \sqrt{\left(\frac{F_C * d_z + 2 * M_B}{d_{SP} * \mu_t}\right)^2 + \left(\frac{F_C + F_B}{\mu_a}\right)^2}$$

aus Tabelle 10: $\mu_t = 0.14$, $\mu_a = 0.16$

Drehbearbeitung:

$$F_c = 1.3 * a_p * f * k_c$$

$$F_c = 1.3 * 1.5mm * 0.25mm * 2515 \frac{N}{mm^2} = 1226N$$

Bohrbearbeitung:

Hier nicht relevant, da keine Bohrbearbeitung vorgesehen. Daher $F_B = 0N$ und $M_B = 0Nmm$

$$F_{SZ} = 1.3 * \sqrt{\left(\frac{1226N*57mm+2*0Nmm}{60mm*0.14}\right)^2 + \left(\frac{1226N+0N}{0.16}\right)^2}$$
$$F_{SZ} = 14703N$$

Ш

$$F_{sk} = \frac{\left(0.27*\frac{L_Z}{d_{sp}} + 0.63\right)*\sqrt{\left(F_c*L_Z + F_G*L_g\right)^2 + \left(F_c*P\right)^2}}{0.5*\left(0.67*\left(1.9*L_{sp} - 4.5mm\right) + \mu_a*d_{sp}\right)}$$

 $L_z = L_w = 133mm$, da die Welle am vorderen Ende längs überdreht werden soll.

 $L_g = 75mm$, da der Schwerpunkt in der Mitte der Werkstücklängsachse liegt.

 $L_{sp} = 17mm$, entspricht der Gesamtspannlänge abzüglich der Vorbaulänge des Spannkopfes.

$$P = \frac{d_z}{2} = \frac{57mm}{2} = 28,5mm$$
 , da Längsdrehoperation

$$\begin{split} F_{sk} &= \\ & \frac{\left(0.27*\frac{133mm}{60mm} + 0.63\right)*\sqrt{(1226N*133mm + 33N*75mm)^2 + (1226N*28,5mm)^2}}{0.5*(0.67*(1.9*17mm - 4.5mm) + 0.16*60mm)} \\ F_{sk} &= \frac{207838Nmm}{14,11mm} = 14727N \end{split}$$

I۷

$$F_{fz} = m * r_{s} * \left(\frac{\pi * n}{30}\right)^{2}$$

aus Tabelle 11: m = 1,65kg, $r_s = 0,026m$

$$F_{fz} = 1,65kg * 0,026m * \left(\frac{\pi * 800min^{-1}}{30}\right)^2$$

 $F_{fz} = 301N$

$$F_{rad\ erf} = 1.6 * 1.3 * (1.6 * (F_{sz} + F_{sk}) + F_{fz})$$

$$F_{rad\ erf} = 1.6 * 1.3 * (1.6 * (14703N + 14727N) + 301N)$$

$$F_{rad\ erf} = 98569N = 99kN$$

Da das Spannkopf-Spannfutter der Größe 65 eine maximale radiale Spannkraft von $F_{rad\ max}=120kN$ aufbringen kann, wäre Grundsatz 1 somit erfüllt.

Grundsatz 2 ist in diesem Beispiel nicht von Belang, da ohnehin ohne Reitstock gearbeitet wird.

Auch Grundsatz 3 wäre erfüllt, da die errechnete Schnittkraft von $F_c = 1226N$ weit unter dem Limit von $F_{c\ max} = 5000N$ liegt.

Grundsätze 4 und 5 spielen wiederum in diesem Beispiel keine Rolle, da beide Grundsätze nur für radiale Bohrbearbeitungen berücksichtigt werden müssen.

Ergebnis der Beispielrechnung

Alle Grenzen sind überprüft.

Die axiale Betätigungskraftkraft ist proportional zur radialen Spannkraft und kann anhand der auf dem Spannkopf-Spannfutter beschrifteten Werte für $F_{ax\;max}$ und $F_{rad\;max}$ durch Interpolieren ermittelt werden, oder wird aus dem Spannkraftdiagramm entnommen [siehe Kapitel »Spannkraftdiagramm«].

MANOK plus Verwendung und Einsatzgrenzen

Bei voller axialer Beaufschlagung des Spannkopf-Spannfutters mit $F_{ax\;max}=45kN$ liegen radial nominal 120kN am Werkstück an.

In dem berechneten Beispielfall bedarf es einer axialen Beaufschlagung von mindestens $F_{ax}=37kN$, welche in eine radiale Spannkraft von $F_{rad}=98kN$ resultiert.

Dies erfüllt die Bedingung $F_{rad} \ge F_{rad\ erf}$.

Somit kann die Bearbeitung ausgeführt werden.

Der Wert liegt nahe dem Grenzwert. Daher ist sicherzustellen, dass sich das Spannkopf-Spannfutter in einem guten Zustand hinsichtlich des Verschmutzungsgrades befindet.

Eine Überprüfung der radialen Spannkraft durch ein geeignetes Spannkraftmessgerät ist der Bearbeitung vorsorglich vorzuschalten. Die dabei ermittelten Werte müssen in dem für Drehzahl ausgewiesenen Bereich liegen [siehe Kapitel »Spannkraftdiagramm«].

6 Transport, Verpackung, Lagerung

6.1 Sicherheit Transport, Verpackung, Lagerung

WARNUNG

Hohe körperliche Belastung durch das Eigengewicht des Produktes oder seiner Einzelteile bei unsachgemäßem Transport!

Ab einem Gewicht von 10 kg geeignete Transportmittel, Hebezeuge und Anschlagmittel verwenden.

WARNUNG

Schwere Quetschverletzungen und Brüche durch herabfallende Bauteile bei unsachgemäßem Transport!

- Sicherstellen, dass ein Wegrollen beziehungsweise Herunterfallen des Produktes ausgeschlossen ist.
- Rutschfeste Unterlage verwenden.
- Bei dem Einsatz eines Hebezeugs geeignete Lastaufnahmemittel und Anschlagmittel verwenden.

WARNUNG

Schwere Verletzungen durch außermittigen Schwerpunkt bei dem Transport!

- Markierungen auf den Packstücken beachten.
- Den Kranhaken so anschlagen, dass sich dieser über dem Schwerpunkt befindet.
- Vorsichtig anheben und die Anschlagpunkte gegebenenfalls korrigieren.

WARNUNG

Schwere Verletzungen durch unsachgemäßen Transport mit einem Hebezeug!

- Niemals Lasten über Personen hinweg bewegen.
- Niemals unter schwebende Lasten treten.
- Die Angaben zu den vorgesehenen Anschlagpunkten beachten. Auf sicheren Sitz der Anschlagmittel achten.
- Nur zugelassene und unbeschädigte Hebezeuge, Lastaufnahme- und Anschlagmittel verwenden.
- Nicht die maximale Tragfähigkeit der Hebezeuge, Lastaufnahme- und Anschlagmittel überschreiten.

HINWEIS

Sachschaden durch herabfallende Bauteile bei unsachgemäßem Transport!

- Sicherstellen, dass ein Wegrollen beziehungsweise Herunterfallen des Produktes ausgeschlossen ist.
- Rutschfeste Unterlage verwenden.
- Bei dem Einsatz eines Hebezeugs geeignete Lastaufnahmemittel und Anschlagmittel verwenden.

6.2 Symbole auf der Verpackung

Zerbrechlich

Kennzeichnet Packstücke mit zerbrechlichem oder empfindlichem Inhalt.

Das Packstück mit Vorsicht behandeln, nicht fallen lassen und keinen Stößen aussetzen.

Vor Nässe schützen

Packstücke vor Nässe schützen und trocken halten.

Lagekennzeichnung

Zeigt die korrekte aufrechte Position des Packstückes an.

6.3 Transportinspektion

Die Lieferung bei Erhalt unverzüglich auf Vollständigkeit und Transportschäden prüfen.

Bei äußerlich erkennbarem Transportschaden wie folgt vorgehen:

- Lieferung nicht oder nur unter Vorbehalt entgegenneh-
- Schadensumfang auf den Transportunterlagen oder auf dem Lieferschein des Transporteurs vermerken
- Reklamation einleiten

INFORMATION

Jeden Mangel reklamieren, sobald dieser erkannt ist. Schadenersatzansprüche können nur innerhalb der geltenden Reklamationsfristen geltend gemacht werden.

6.4 Auspacken und innerbetrieblicher Transport

Das Gesamtgewicht des Produktes ist abhängig von der Baugröße.

Um das Produkt oder seine Einzelteile sicher aus der Verpackung zu heben, zu transportieren und in der Werkzeugmaschine beziehungsweise auf dem Maschinentisch zu positionieren und zu montieren / demontieren, muss je nach Gewicht ein Hebezeug verwendet werden.

- 1. Das Produkt wird in stabiler Lage verpackt und verfügt über Gewinde / Bohrungen für den Transport.
- In diese Transportgewinde / -bohrungen können Anschlagmittel eingebracht werden. Um das Produkt aus der Verpackung zu heben, können bei vertikal stehend verpackten Produkten gegebenenfalls die frontseitigen Funktionsgewinde zum Einbringen von Anschlagmitteln verwendet werden.
- 3. Lastaufnahmemittel in die Anschlagmittel einhängen.
- 4. Das Produkt je nach Gewicht mit einem Hebezeug sicher aus der Verpackung heben und auf einer stabilen, ebenen Unterlage absetzen.
- Das Produkt gegen Wegrollen sichern.
- Bei Transport mit einem Transportwagen muss das Produkt lagesicher auf einer rutschfesten Unterlage transportiert werden.

6.5 Verpackung

Die einzelnen Packstücke sind entsprechend den zu erwartenden Transportbedingungen verpackt. Für die Verpackung wurden ausschließlich umweltfreundliche Materialien verwendet.

Die Verpackung soll die einzelnen Bauteile bis zur Montage vor Transportschäden, Korrosion und anderen Beschädigungen schützen. Daher die Verpackung nicht zerstören und erst kurz vor der Montage entfernen.

INFORMATION

Die Packstücke sind luftdicht in Folie eingeschlagen und in Kartons verpackt. Zu den Einzelgewichten der jeweiligen Baugrößen [siehe Kapitel »Allgemeine Angaben«].

Verpackungsmaterial nach den jeweils gültigen gesetzlichen Bestimmungen und örtlichen Vorschriften entsorgen.

HINWEIS

Schaden für die Umwelt durch unsachgemäße **Entsorgung von Verpackungsmaterial!**

- Verpackungsmaterialien umweltgerecht entsorgen.
- Die örtlich geltenden Entsorgungsvorschriften beachten und gegebenenfalls einen Fachbetrieb mit der Entsorgung beauftragen.

6.6 Lagerung

INFORMATION

Auf den Packstücken befinden sich gegebenenfalls Hinweise zur Lagerung und Wiedereinlagerung, die über die hier genannten Anforderungen hinausgehen. Diese Hinweise sind entsprechend einzuhalten.

Packstücke unter folgenden Bedingungen lagern:

- Lagesicher.
- Nicht im Freien aufbewahren.
- Trocken und staubfrei lagern.
- Keinen aggressiven Medien aussetzen.
- Vor Sonneneinstrahlung schützen.
- Mechanische Erschütterungen vermeiden.
- Lagertemperatur: 15 bis 35 °C.
- Relative Luftfeuchtigkeit: maximal 60 %.
- Bei Lagerung länger als 3 Monate:
 - Regelmäßig den allgemeinen Zustand aller Teile und der Verpackung kontrollieren.
 - Falls erforderlich, die Konservierung auffrischen oder erneuern.

6.7 Konservierung

- 1. Produkt reinigen und abschmieren [siehe Kapitel »Reinigung« und »Produkt abschmieren«].
- Mit Konservierungsöl die Innen- und Außenflächen des Produktes dünn einölen. Überschüssiges Konservierungsöl mit einem weichen, fusselfreien, reißfesten Tuch abnehmen.
- 3. Produkt luftdicht in Folie verpacken.
- 4. Produkt wiedereinlagern [siehe Kapitel »Wiedereinlagerung«].

6.8 Wiedereinlagerung

Produkt unter folgenden Bedingungen wiedereinlagern:

- 1. Produkt konservieren [siehe Kapitel »Konservierung«].
- Das Produkt muss lagesicher gelagert werden. Einen geeigneten Behälter für das Produkt, eine rutschfeste Unterlage verwenden oder den Regalboden mit einer umlaufenden Sicherungskante ausstatten.
- 3. Lagerungsbedingungen siehe Kapitel »Lagerung«.

Montage

7.1 Sicherheit Montage

WARNUNG

Schwere Verletzungen durch unqualifiziertes Personal bei der Montage / Demontage!

Montage / Demontage nur durch qualifizierte Fachkräfte des jeweiligen Fachgebietes.

WARNUNG

Schwere Verletzungen durch unvorhergesehenes Anlaufen der Werkzeugmaschine!

- Werkzeugmaschine in den Einrichtbetrieb setzen.
- Alle Werkzeuge, Hilfsmittel und Prüfmittel sofort nach dem Gebrauch aus dem Arbeitsraum der Maschine entfernen.
- Alle Anschlagmittel von dem Produkt und aus dem Arbeitsraum der Maschine entfernen.

WARNUNG

Schwere Verletzungen durch Austritt von unter **Hochdruck stehenden Medien!**

- Medienzufuhr während der Montage / Demontage abschalten.
- Eventuell eingekammerten Druck abbauen.
- Anlage abschalten.

WARNUNG

Schwere Quetschverletzungen und Brüche durch herabfallende Bauteile bei unsachgemäßer Montage / Demontage!

- Sicherstellen, dass ein Wegrollen beziehungsweise Herunterfallen des Produktes ausgeschlossen ist.
- Zur Montage / Demontage auf eine vertikal hängende Spindel der Maschine gegebenenfalls eine geeignete Montagehilfe verwenden.

WARNUNG

Schwere Quetschverletzungen durch unsachgemäße Maschinenbewegung bei der Montage / Demontage!

- Maschinenbewegungen sind während der Montage / Demontage nur im Einrichtbetrieb zulässig.
- Niemals in vorhandene Spalte greifen.
- Spaltmaße bei bewegten Bauteilen beachten.

WARNUNG

Schwere Kopfverletzungen durch das Hineinbeugen in den Arbeitsraum der Maschine!

- Nur in den Arbeitsraum der Maschine hineinbeugen, wenn sich in diesem keine Schneidwerkzeuge oder spitzen Gegenstände befinden beziehungsweise diese abgedeckt sind.
- Niemals Körperteile unter potenziell herabfallende Teile im Arbeitsraum der Maschine bringen.
- Zur Montage / Demontage auf eine vertikal hängende Spindel der Maschine je nach Gewicht eine geeignete Montagehilfe verwenden.

WARNUNG

Hohe körperliche Belastung durch das Eigengewicht des Produktes oder seiner Einzelteile bei unsachgemäßem Transport!

■ Ab einem Gewicht von 10 kg geeignete Transportmittel, Hebezeuge und Anschlagmittel verwenden.

VORSICHT

Schnittverletzungen durch scharfkantige Wechselteile und / oder Spannelemente!

 Die Montage / Demontage von Wechselteilen und Spannelementen darf nur von qualifizierten Fachkräften des jeweiligen Fachgebietes durchgeführt werden.

HINWEIS

Sachschaden durch im Produkt verbleibende Anschlagmittel!

 Anschlagmittel nach der Montage des Produktes immer sofort entfernen.

HINWEIS [nur für Aluminiumbauteile] Sachschaden bei falschen Schraubenanzugsdrehmomenten für Aluminiumbauteile!

Die reduzierten Schraubenanzugsdrehmomente für Aluminiumbauteile müssen beachtet werden **[siehe** Kapitel »Schraubenanzugsdrehmomente«].

7.2 Vorbemerkungen

- Schrauben sind gemäß der Gewindegröße und Festigkeitsklasse mit dem vorgeschriebenen Anzugsdrehmoment über Kreuz festzuziehen [siehe Kapitel »Schraubenanzugsdrehmomente«]. Beim Festziehen Schrauben ist auf Gleichmäßigkeit zu achten um einen Verzug unter Belastung zu vermeiden.
- Zur Vermeidung von Genauigkeitsfehlern sind Anschraub- sowie Passflächen zu reinigen [Hinweise zur Reinigung siehe Kapitel »Reinigung «]. Werksseitige Benetzung von Planflächen und gegebenenfalls Spannelementen dient nur als Korrosionsschutz. Dies ist keine funktionsbedingte Schmierung.
- Das Aufbringen von Schmiermittel ist nur auf den mechanischen Laufflächen vorgesehen. Hinweise zu Schmiermitteln beachten [siehe Kapitel »Einsatz von Schmiermitteln«].
- Zu viel Schmiermittel auf der Auflagefläche vermeiden, da dies Planlauffehler verursachen kann.
- Dichtelemente [zum Beispiel O-Ringe, Quadringe] sowie Dichtflächen sind mit Fett zu versehen. Hinweise zum Fetten beachten [siehe Kapitel »Einsatz von Schmiermitteln«].
- Die Funktionsflächen [Plan-, Pass-, Kegel- und Dichtflächen] dürfen nicht beschädigt werden.

7.3 Schraubenanzugsdrehmomente

Die Tabellen zeigen die vorgeschriebenen Werte. Kenntnis der einschlägigen Richtlinien und Auslegungskriterien werden vorausgesetzt.

HINWEIS

Sachschaden durch fehlerhafte Schraubenanzuasdrehmomente!

Zur Befestigung des Produktes an der Maschine müssen sowohl die von HAINBUCH als auch die Maschinenhersteller vorgeschriebenen Werte für die Schraubenanzugsdrehmomente beachtet werden. Falls der Maschinenhersteller anderslautende Werte vorgibt, muss Rücksprache mit HAINBUCH gehalten werden.

Metrische Regelgewinde

In nachfolgender Tabelle sind die Richtwerte der Schraubenanzugsdrehmomente zum Erreichen der höchstzulässigen Vorspannung für metrische Regelgewinde in Nm angegeben.

• Gesamtreibungszahl $\mu_{qes} = 0.12$

Gewindebezeich- nung	Anzugsdrehmoment bei Schrauben- qualität [Nm]	
	10.9	12.9
M4	4	5
M5	7	9
M6	12	15
M8	25	38
M10	50	70
M12	100	130
M16	220	300
M20	400	550
M24	600	800

Tabelle 16: Schraubenanzugsdrehmomente metrische Regelgewinde

Aluminiumbauteile

In nachfolgender Tabelle sind die reduzierten Schraubenanzugsdrehmomente zum Befestigen von Aluminiumbauteilen angegeben.

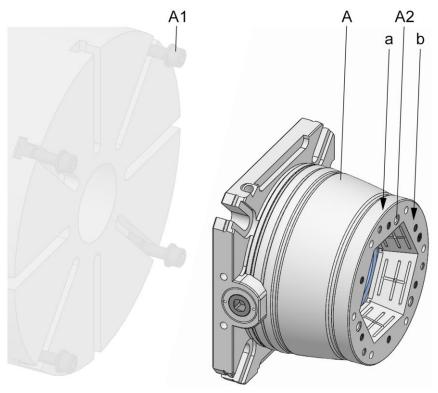

3 3		
Gewindebezeich- nung	Anzugsdrehmo- ment [Nm]	Mindestein- schraubtiefe [mm]
M6	10	12
M8	23	16
M10	46	20

Tabelle 17: Schraubenanzugsdrehmomente Aluminiumbauteile

7.4 Vorbereitung der Maschine für die Montage

- 1. Die Maschine in den Einrichtbetrieb setzen.
- 2. Schneidwerkzeuge und / oder spitze Gegenstände aus dem Arbeitsraum der Maschine entfernen oder diese abdecken.

7.5 Montage des Produktes

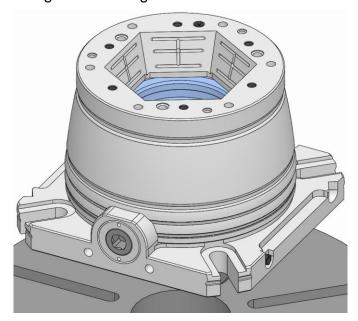
- A Produkt
- A1 Befestigungsschrauben Produkt
- A2 Transportgewinde Produkt
- a Prüffläche Position Produkt
- b Prüffläche Planlauf Produkt
- Die Maschine, wie in Kapitel »Vorbereitung der Maschine für die Montage« beschrieben, für die nachfolgenden Schritte vorbereiten.

7.5.1 Kompatibilitätsprüfung

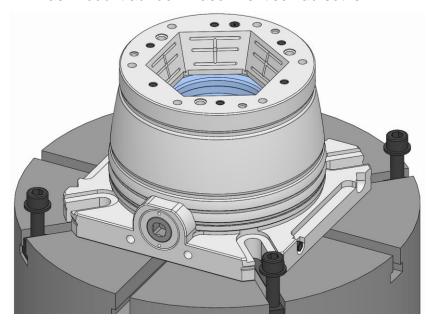
Die Kompatibilität des Produktes und der Anschlussstelle der Maschine muss geprüft werden.

Hierzu die Anbindungsstelle und das Produkt auf die gleiche Adaptionsgeometrie hin prüfen. Ebenso überprüfen, ob das Betätigungselement / Kupplungselement passend ist.

Zwischen dem Betätigungselement der Maschine und des Produktes kann gegebenenfalls ein Verbindungsstück notwendig sein.

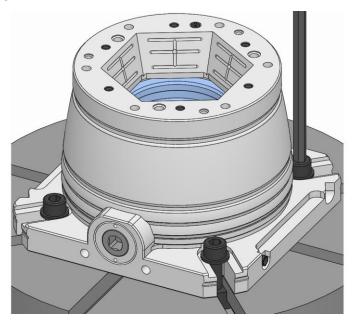

7.5.2 Vorbereitung des Produktes

Das Produkt wird im zusammengebauten Zustand angeliefert.


Für die Montage des Produktes sind keine vorbereitenden Schritte notwendig.

7.5.3 Montage des Produktes auf die Maschine

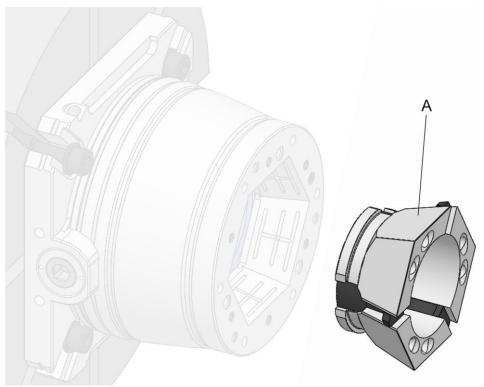
- 1. Die Hydraulikanlage drucklos schalten.
- 2. Die gegebenenfalls notwendigen Anschlagmittel einbringen.
- 3. Bei einer vertikal hängenden Spindel gegebenenfalls die Montagehilfe anbringen.



4. Das Produkt auf den Maschinentisch aufsetzen.

- 5. Die Befestigungsschrauben Produkt einschrauben und diese leicht anlegen.
- 6. Die gegebenenfalls verwendeten Anschlagmittel lösen und entfernen.
- 7. Die gegebenenfalls verwendete Montagehilfe bei einer vertikal hängenden Spindel entfernen.

8. Die Position des Produktes an der Prüffläche Position Produkt prüfen [idealerweise ≤0,01mm] und gegebenenfalls vorsichtig mit einem Kunststoffhammer korrigieren.

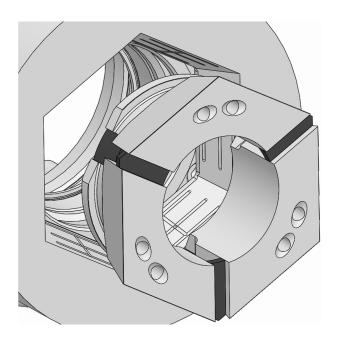


- 9. Die Befestigungsschrauben Produkt mit dem vorgeschriebenen Anzugsdrehmoment festziehen [siehe Kapitel »Schraubenanzugsdrehmomente«].
- 10. Den Planlauf an der Prüffläche Planlauf Produkt prüfen [idealerweise ≤ 0,01 mm].

Wenn der Planlauf größer ist als der maximal zulässige Wert:

- 1. Produkt demontieren.
- Auflagefläche und Passflächen von dem Maschinentisch und dem Produkt reinigen.
- Bei einem Grat oder einer leichten Beschädigung die Auflagefläche des Produktes und des Maschinentisches leicht mit einem Ölstein abziehen.
- 4. Produkt erneut montieren.
- 5. Ausrichtvorgang wiederholen.
- 6. Planlaufprüfung wiederholen.

7.6 Montage des Spannelements


A Spannkopf [Spannelement]

☆ INFORMATION

Vor der Montage des Spannelements muss gegebenenfalls das Wechselteil montiert werden, da es ansonsten nicht mehr montiert werden kann.

Benötigte Sonderhilfsmittel:

- Wechselvorrichtung
- 1. Die Maschine, wie in Kapitel »Vorbereitung der Maschine für die Montage« beschrieben, für die nachfolgenden Schritte vorbereiten.
- 2. Das Spannmittel in Lösestellung bringen.



WARNUNG

Schwere Quetschverletzungen durch Hineingreifen in den Kupplungs- / Schlitzbereich des Spannkopfes oder in die Wechselvorrichtung!

- Während der Betätigung niemals in den Kupplungs- / Schlitzbereich des Spannkopfes oder in die Wechselvorrichtung greifen.
- 3. Den Spannkopf mit einer geeigneten Wechselvorrichtung in das Produkt einsetzen. Dabei müssen die Flächen des Spannkegels im Produkt und am Spannkopf übereinstimmen.
- 4. Die Wechselvorrichtung lösen und entfernen.

7.7 Montage der Wechselteile

- A Wechselteil Variante direkt verschraubt
- B Wechselteil Variante x-fach axial verschraubt
- B1 Befestigungsschrauben Wechselteil Variante x-fach axial verschraubt
- C Wechselteil Variante x-fach axial verschraubt Bajonett
- C1 Befestigungsschrauben Wechselteil Variante x-fach axial verschraubt Bajonett
- D Wechselteil Variante zentral axial verschraubt
- D1 Befestigungsschraube Wechselteil Variante zentral axial verschraubt
- E Wechselteil Variante radial geklemmt
- E1 Klemmschraube Wechselteil Variante radial geklemmt

GEFAHR

Schwere Verletzungen durch herausgeschleuderte Werkstücke bei fehlenden Wechselteilen!

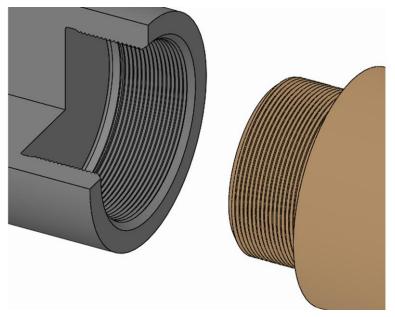
 Ist der Grundanschlag des Produktes demontiert muss zwingend die Schutzbüchse montiert werden.

Die Wechselteile, wie zum Beispiel der Werkstückanschlag, können auf unterschiedliche Arten montiert werden.

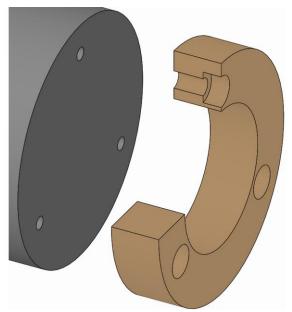
Zusätzlich zu dieser Betriebsanleitung muss gegebenenfalls die Betriebsanleitung der zugehörigen Wechselteile gelesen und beachtet werden.

INFORMATION

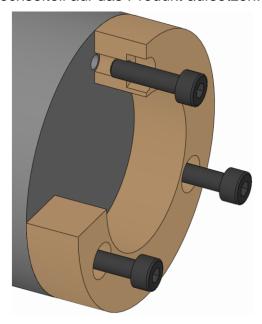
Um das Wechselteil montieren zu können, ist es gegebenenfalls notwendig das Spannelement zuvor zu demontieren.


- 1. Die Maschine, wie in Kapitel »Vorbereitung der Maschine für die Montage« beschrieben, für die nachfolgenden Schritte vorbereiten.
- 2. Das Spannmittel in Lösestellung bringen.

INFORMATION


Das Wechselteil ist gegebenenfalls positioniert. Als Positionierung dienen zum Beispiel Markierungen oder ein Zylinderstift und eine Bohrung beziehungsweise eine Nut.

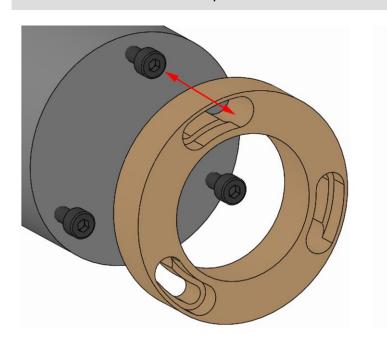
7.7.1 Montage der Variante direkt verschraubt



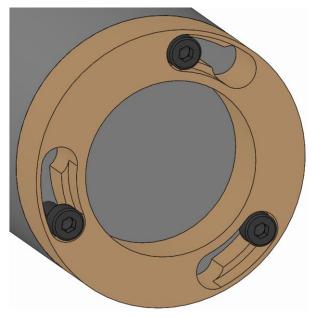
Das Wechselteil über dessen Gewinde in das Produkt einschrauben und festziehen.

7.7.2 Montage der Variante x-fach axial verschraubt

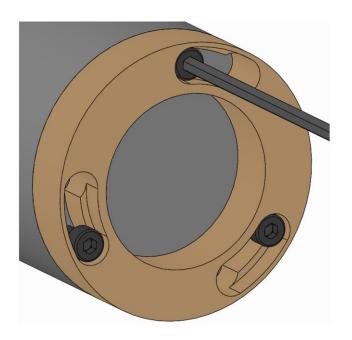
1. Das Wechselteil auf das Produkt aufsetzen.



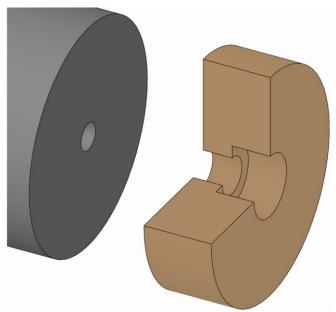
2. Die Befestigungsschrauben Wechselteil einschrauben und diese mit dem vorgeschriebenen Anzugsdrehmoment festziehen [siehe Kapitel »Schraubenanzugsdrehmomente«].


7.7.3 Montage der Variante x-fach axial verschraubt Bajonett

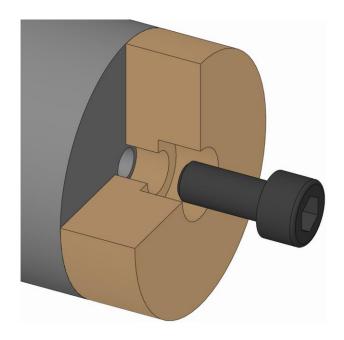
INFORMATION


Die Erstmontage des Wechselteils mit Bajonett erfolgt nach Variante x-fach axial verschraubt, siehe Kapitel »Montage der Variante x-fach axial verschraubt«. Nach der Erstmontage verbleiben die Befestigungsschrauben Wechselteil im Spannmittel.

1. Das Wechselteil auf das Produkt aufsetzen, sodass der Schraubenkopf der Befestigungsschraube Wechselteil durch die Bajonettöffnung passt.



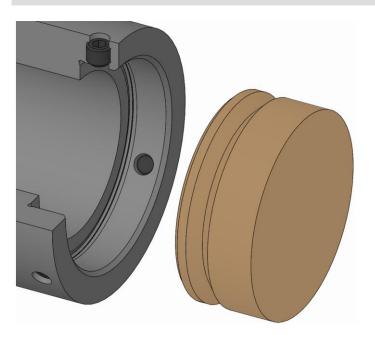
Das Wechselteil bis auf Anschlag verdrehen.



3. Die Befestigungsschrauben Wechselteil mit dem vorgeschriebenen Anzugsdrehmoment festziehen [siehe Kapitel »Schraubenanzugsdrehmomente«].

7.7.4 Montage der Variante zentral axial verschraubt

1. Das Wechselteil in das Produkt einsetzen.

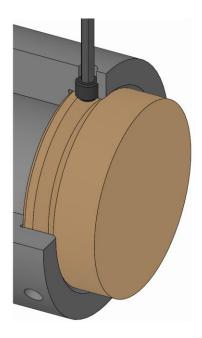

2. Die Befestigungsschraube Wechselteil einschrauben und diese mit einem Anzugsdrehmoment von 15 Nm festziehen.

7.7.5 Montage der Variante radial geklemmt

ñ

INFORMATION

Zum Einsetzen / Herausnehmen des Wechselteils in das / aus dem Produkt kann gegebenenfalls eine Griffstange oder ein geeignetes Hilfsmittel verwendet werden.


ñ

INFORMATION

Beim Einsetzen des Wechselteils auf die korrekte Einbaurichtung des Wechselteils achten, damit die Klemmschraube Wechselteil Variante radial geklemmt in die Nut des Wechselteils eingreifen.

Bei der Montage des Grundanschlags muss die geschliffene Seite nach vorne zeigen.

Das Wechselteil in das Produkt einsetzen.

- Die Klemmschrauben Wechselteil hineindrehen und mit dem vorgeschriebenen Anzugsdrehmoment festziehen [siehe Beschriftung].
- 3. Die gegebenenfalls verwendete Griffstange beziehungsweise das Hilfsmittel lösen und entfernen.

7.8 Ausrichten des Spannmittels mit Prüfkörper

Um die größtmögliche Genauigkeit zu erreichen, muss das Spannmittel am Werkstück ausgerichtet werden. Hierzu kann ein Prüfkörper verwendet werden. Ein Prüfkörper kann ein Prüfring, eine Prüfwelle oder ein Prüfwerkstück [ist an die Werkstückkontur angenähert] sein.

Um das Spannmittel mittels Prüfkörper ausrichten zu können, müssen die Befestigungsschrauben Produkt frei zugänglich sein.

- Die Maschine, wie in Kapitel »Vorbereitung der Maschine für die Montage« beschrieben, für die nachfolgenden Schritte vorbereiten.
- Das für den Prüfkörper passende Spannelement und Wechselteil montieren [siehe Kapitel »Montage des Spannelements« und »Montage der Wechselteile«].
- 3. Den Prüfkörper spannen.
- Die Befestigungsschrauben Produkt einige Umdrehungen lösen ohne diese zu entfernen.
- Das Spannmittel ausrichten [siehe Ausrichtvorgang aus Kapitel »Montage des Produktes auf die Maschine«].
- Sicherstellen, dass die Befestigungsschrauben Produkt nach dem Ausrichtvorgang wieder mit dem vorgeschriebenen Anzugsdrehmoment festgezogen sind [siehe Kapitel »Schraubenanzugsdrehmomente«].

8 Inbetriebsetzung

Zur Inbetriebsetzung den Betriebsdruck auf den zugelassenen, ermittelten Bearbeitungswert stellen.

Die Werkzeugmaschine darf erst anlaufen, wenn der Betriebsdruck vollständig aufgebaut ist.

8.1 Sicherheit Inbetriebsetzung

GEFAHR

Schwere Verletzungen durch herausgeschleuderte oder herabfallende Werkstücke bei zu geringer Spannkraft!

- Werkstückrohlinge dürfen nicht außerhalb der Durchmesserspannweite liegen.
- Die Betätigungskraft vor der Inbetriebsetzung auf den zugelassenen, ermittelten Bearbeitungswert stellen.
- Die Werkstückspannung darf nicht außerhalb der definierten Grenzen erfolgen [siehe Kapitel »Einsatzgrenzen«].
- Die Spannkraft regelmäßig prüfen und gegebenenfalls korrigieren.

WARNUNG

Schwere Verletzungen durch unvorhergesehenes Anlaufen der Werkzeugmaschine!

 Vor der Inbetriebsetzung alle an der Werkzeugmaschine vorhandenen Schutztüren oder -hauben schließen.

WARNUNG

Schwere Verletzungen durch abgeschleuderte Werkzeuge und Prüfmittel!

 Sicherstellen, dass alle Werkzeuge und Prüfmittel vor der Inbetriebsetzung aus dem Arbeitsraum der Maschine entfernt sind.

HINWEIS

Schwerer Sachschaden der Werkzeugmaschine / des Produktes durch herausgeschleuderte oder herabfallende Werkstücke bei zu geringer Spannkraft!

- Werkstückrohlinge dürfen nicht außerhalb der Durchmesserspannweite liegen.
- Die Betätigungskraft vor der Inbetriebsetzung auf den zugelassenen, ermittelten Bearbeitungswert stellen.
- Die Werkstückspannung darf nicht außerhalb der definierten Grenzen erfolgen [siehe Kapitel »Einsatzgrenzen«].
- Die Spannkraft regelmäßig prüfen und gegebenenfalls korrigieren.

HINWEIS

Beschädigung von Bauteilen durch Kühlschmierstoffe ohne ausreichenden Korrosionsschutz!

- Die aus Stahl-Werkstoffe bestehenden Bauteile müssen vor dem üblichen Oxidationsprozess geschützt werden.
- Nur Kühlschmierstoffe mit einem ausreichenden Korrosionsschutz verwenden.

HINWEIS

Sachschaden durch verunreinigte / nicht aufbereitete Kühlschmierstoffe!

Für eine ordnungsgemäße Funktion des Produktes, besonders bei einer Innenspülung mit Kühlschmierstoffen und / oder bei der Verwendung von Werkzeugen mit Innenspülung, ist darauf zu achten, dass der Kühlschmierstoff gereinigt / aufbereitet ist und keine Partikel >100µm enthält [filtriert mit Maschenweite 100µm].

HINWEIS

Beschädigung von Dichtungen durch falsche Kühlschmierstoffe!

- Keine Kühlschmierstoffe verwenden, die die verbauten Dichtelemente angreifen und beschädigen. Werkstoffe der verbauten Dichtelemente können NBR, Viton, PUR sein.
- Keine esterhaltigen beziehungsweise polaren Kühlschmierstoffe verwenden.

HINWEIS

Beschädigung von Spannelementen durch falsche Kühlschmierstoffe!

 Keine esterhaltigen beziehungsweise polaren Kühlschmierstoffe verwenden.

8.2 Überprüfung des Gesamthubs

WARNUNG

Schwere Quetschverletzungen durch bewegte Bauteile beim Prüfen der Hublagen!

- Die Maschine in den Einrichtbetrieb setzen.
- Niemals in bewegte Bauteile greifen.
- Spaltmaße bei bewegten Bauteilen beachten.

Vor der Inbetriebsetzung muss der Gesamthub kontrolliert werden, um sicherzustellen, dass ausreichend Reservehub und Öffnungshub vorhanden ist.

Dazu muss dieselbe Messung des bewegten Bauteils zu einem festen Fixpunkt in vorderer und hinterer Endlage vorgenommen werden.

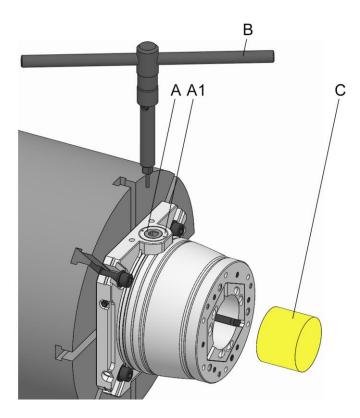
Anschließend den ermittelten Wert in hinterer Endlage von dem ermittelten Wert in vorderer Endlage abziehen. Dieser muss dem Soll-Gesamthub entsprechen oder größer sein.

Für den axialen Soll-Gesamthub müssen die Werte von axialer Spannreserve und axialem Lösehub addiert werden [siehe Kapitel »Allgemeine Angaben«].

8.3 Prüfungen

HINWEIS

Schwere Beschädigung oder Zerstörung der Werkzeugmaschine und des Werkstückes durch beschädigte, unvollständige oder unsachgemäß montierte Produkte!


- Nur unbeschädigte und vollständige Produkte sachgemäß montieren.
- Im Zweifel den Hersteller kontaktieren.

Folgende Punkte vor jeder Montage und / oder vor jeder Inbetriebsetzung der Produkte sicherstellen:

- Die verwendeten Produkte sind unbeschädigt.
- Alle Befestigungsschrauben der Produkte sind vorhanden und mit dem richtigen Anzugsdrehmoment angezogen.
- Alle vorhandenen Gummisegmente der Spannelemente und Anbauteile sind weder eingerissen noch weisen sie poröse Stellen auf.

- Riffelungen und gerillte Profile dürfen nicht zu stark verrundet sein, da der Reibkoeffizient nicht mehr erreicht wird.
- Alle Kanten und Laufflächen sind weder ausgebrochen noch weisen diese Verschleißerscheinungen auf.
- Die eingestellte Drehzahl der Werkzeugmaschine darf die Maximaldrehzahl des Produktes nicht überschreiten. Von allen angegebenen maximalen Drehzahlen der kombinierten Produkte ist immer der niedrigste Wert zu beachten.
- Die ermittelte Betätigungskraft ist zu beachten, um das Werkstück mit ausreichender Spannkraft zu spannen.
- Die maximale, auf dem Produkt angegebene Betätigungskraft darf nicht überschritten Von allen angegebenen maximalen Betätigungskräften der kombinierten Produkte ist immer der niedrigste Wert zu beachten.
- Alle Montagewerkzeuge sind aus dem Bearbeitungsraum entfernt.
- Spannmittel und Werkstück sind kompatibel Spanndurchmesser regelmäßig prüfen.
- Spannkraftmessung durchführen.

8.4 Werkstück

- Antrieb Α
- Gewindebüchse Antrieb Α1
- В Betätigungsschlüssel
- С Werkstück

Benötigte Sonderhilfsmittel:

Betätigungsschlüssel

GEFAHR

Schwere Verletzungen durch herausgeschleuderte Teile bei unzureichender Werkstückspannung!

- Niemals die komplette Spannreserve ausnutzen.
- Nicht den zulässigen maximalen Spannreservehub überschreiten.
- Die verbleibende Spannreserve muss immer an den vorhandenen Werkstoff des Werkstückes und dessen mögliche Verformungen angepasst werden.

WARNUNG

Quetschverletzungen der Hände / Finger beim unsachgemäßen Einlegen des Werkstückes!

- Hände / Finger nicht zwischen Werkstück und Spannmittel bringen.
- Niemals in den Spannbereich greifen.

VORSICHT

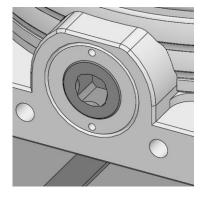
Verbrennungen durch hohe Temperatur des Werkstückes!

 Folgende Schutzausrüstung ist zusätzlich zur Grundausrüstung zu tragen:

WARNUNG

Schwere Verletzungen durch einen abgeschleuderten Betätigungsschlüssel!

- Ausschließlich den originalen Betätigungsschlüssel verwenden.
- Den Betätigungsschlüssel sofort nach dessen Verwendung aus dem Produkt herausnehmen und aus dem Arbeitsraum der Maschinen entfernen.
- Sollte die Selbstauswerfer-Funktion des Betätigungsschlüssels fehlen oder beeinträchtigt sein, darf dieser erst nach dem Einsetzen einer neuen Feder wieder verwendet werden.

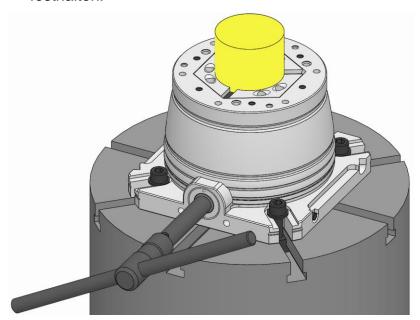



INFORMATION

Der Betätigungsschlüssel ist mit einer Feder ausgestattet, die den Betätigungsschlüssel aus dem Produkt drückt, sobald dieser losgelassen wird.

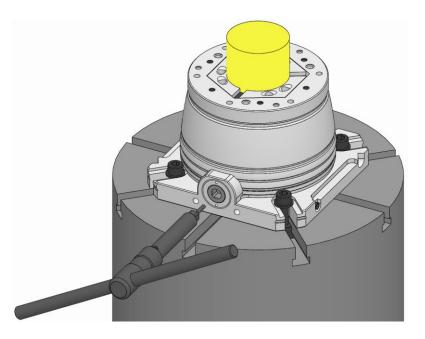
8.4.1 Werkstück spannen

Um das Werkstück zu Spannen müssen bereits das passende Spannelement und /oder die passenden Wechselteile montiert sein [siehe Kapitel »Montage des Spannelements« und Montage der Wechselteile«].


GEFAHR

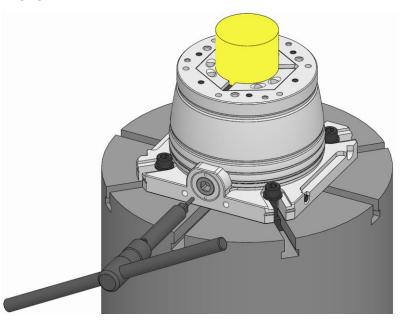
Schwere Verletzungen durch herausgeschleuderte Werkstücke bei fehlerhaft montierter Gewindebüchse Antrieb!

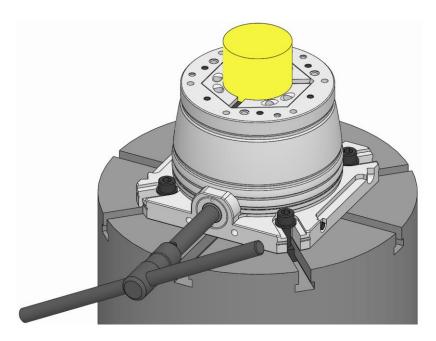
- Die Gewindebüchse Antrieb darf sich nicht drehen lassen.
- Die Gewindebüchse Antrieb muss am Produkt bündig beziehungsweise leicht nach innen versetzt montiert sein.
- Den Sitz der Gewindebüchse Antrieb kontrollieren.
- Das Spannmittel in Lösestellung bringen [siehe Kapitel »Spannung des Werkstückes lösen«].
- 3. Das Werkstück in das Produkt einsetzen und gegebenenfalls gegen Herunterfallen sichern.


Den Betätigungsschlüssel in den Antrieb einsetzen und festhalten.

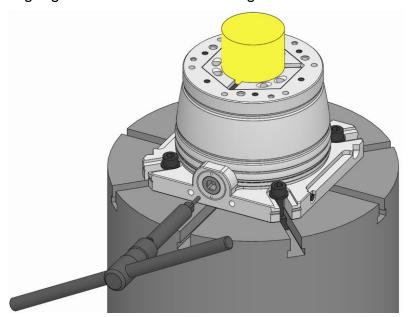
INFORMATION

Um eine gleichbleibende Spannung des Werkstückes sicherzustellen zum Festziehen des Antriebs den Drehmomentschlüsselsatz verwenden.


5. Den Antrieb im Uhrzeigersinn mit dem Betätigungsschlüssel verdrehen und dieses mit dem zulässigen, ermittelten Betätigungsmoment festziehen.


- Den Betätigungsschlüssel aus dem Antrieb herausnehmen und aus dem Arbeitsraum der Maschine entfernen.
- Die gegebenenfalls verwendete Sicherung des Werk-7. stückes entfernen.

8.4.2 Spannung des Werkstückes lösen


Das Werkstück gegebenenfalls gegen Herunterfallen sichern.

Den Betätigungsschlüssel in den Antrieb einsetzen und festhalten.

 Den Antrieb gegen den Uhrzeigersinn mit dem Betätigungsschlüssel bis auf Anschlag verdrehen.

- 4. Den Betätigungsschlüssel aus dem Antrieb herausnehmen und aus dem Arbeitsraum der Maschine entfernen.
- 5. Das Werkstück aus dem Produkt herausnehmen. Dabei die gegebenenfalls verwendete Sicherung des Werkstücks entfernen.

8.5 Vorgehen nach Kollision

Im Falle einer Kollision muss das Produkt und seine Einzelteile vor erneutem Einsatz auf Risse und Beschädigungen überprüft werden.

Dazu das Produkt von der Maschine demontieren [siehe Kapitel »Demontage des Produktes«] und zerlegen [Zerlegungsgrad siehe Kapitel »Reinigung«].

9 Tätigkeiten nach Produktionsende

- Produkt in Lösestellung fahren.
- Werkzeugmaschine ausschalten und gegen Wiedereinschalten sichern.
- 3. Schutztür / -haube öffnen.

WARNUNG

Augen- und Schnittverletzungen durch fehlende Schutzkleidung bei dem Reinigungsvorgang!

- Produkt niemals mit Druckluft reinigen.
- Folgende Schutzausrüstung ist zusätzlich zur Grundausrüstung zu tragen:

- Produkt mit einem weichen, fusselfreien Tuch von Spänen und Produktionsrückständen säubern und leicht einölen.
- 5. Schutztür / -haube schließen.

10 Demontage

Wenn eine Produktionspause entsteht, die länger als drei Tage dauert, muss das Produkt demontiert und gemäß den Angaben des Herstellers sachgerecht eingelagert werden [siehe Kapitel »Transport, Verpackung, Lagerung«].

10.1 Sicherheit Demontage

WARNUNG

Schwere Verletzungen durch unqualifiziertes Personal bei der Montage / Demontage!

 Montage / Demontage nur durch qualifizierte Fachkräfte des jeweiligen Fachgebietes.

WARNUNG

Schwere Verletzungen durch unvorhergesehenes Anlaufen der Werkzeugmaschine!

- Werkzeugmaschine in den Einrichtbetrieb setzen.
- Alle Werkzeuge, Hilfsmittel und Prüfmittel sofort nach dem Gebrauch aus dem Arbeitsraum der Maschine entfernen.
- Alle Anschlagmittel von dem Produkt und aus dem Arbeitsraum der Maschine entfernen.

WARNUNG

Schwere Verletzungen durch Austritt von unter Hochdruck stehenden Medien!

- Medienzufuhr während der Montage / Demontage abschalten.
- Eventuell eingekammerten Druck abbauen.
- Anlage abschalten.

WARNUNG

Schwere Quetschverletzungen und Brüche durch herabfallende Bauteile bei unsachgemäßer Montage / Demontage!

- Sicherstellen, dass ein Wegrollen beziehungsweise Herunterfallen des Produktes ausgeschlossen ist.
- Zur Montage / Demontage auf eine vertikal h\u00e4ngende Spindel der Maschine gegebenenfalls eine geeignete Montagehilfe verwenden.

WARNUNG

Schwere Quetschverletzungen durch unsachgemäße Maschinenbewegung bei der Montage / Demontage!

- Maschinenbewegungen sind während der Montage / Demontage nur im Einrichtbetrieb zulässig.
- Niemals in vorhandene Spalte greifen.
- Spaltmaße bei bewegten Bauteilen beachten.

WARNUNG

Schwere Kopfverletzungen durch das Hineinbeugen in den Arbeitsraum der Maschine!

- Nur in den Arbeitsraum der Maschine hineinbeugen, wenn sich in diesem keine Schneidwerkzeuge oder spitzen Gegenstände befinden beziehungsweise diese abgedeckt sind.
- Niemals Körperteile unter potenziell herabfallende Teile im Arbeitsraum der Maschine bringen.
- Zur Montage / Demontage auf eine vertikal hängende Spindel der Maschine je nach Gewicht eine geeignete Montagehilfe verwenden.

WARNUNG

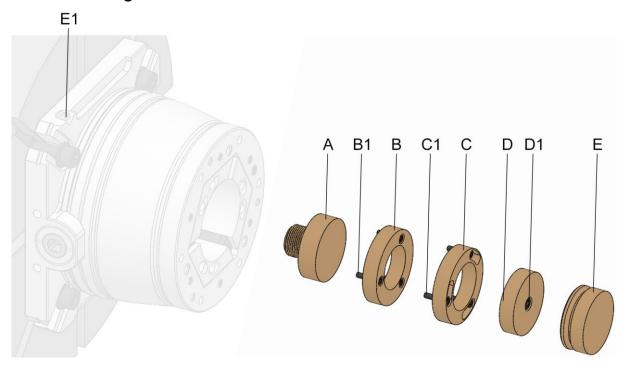
Hohe körperliche Belastung durch das Eigengewicht des Produktes oder seiner Einzelteile bei unsachgemäßem Transport!

Ab einem Gewicht von 10 kg geeignete Transportmittel, Hebezeuge und Anschlagmittel verwenden.

VORSICHT

Schnittverletzungen durch scharfkantige Wechselteile und / oder Spannelemente!

Die Montage / Demontage von Wechselteilen und Spannelementen darf nur von qualifizierten Fachkräften des jeweiligen Fachgebietes durchgeführt werden.


INFORMATION

In den Einzelteilen des Produktes, den Wechselteilen oder den Spannelementen gegebenenfalls vorhandene Abdrück- / Abziehgewinde verwenden.

10.2 Vorbereitung der Maschine für die Demontage

- 1. Die Maschine in den Einrichtbetrieb setzen.
- 2. Schneidwerkzeuge und / oder spitze Gegenstände aus dem Arbeitsraum der Maschine entfernen oder diese abdecken.
- 3. Betriebs- und Hilfsstoffe sowie restliche Verarbeitungsmaterialien entfernen und umweltgerecht entsorgen.

10.3 Demontage der Wechselteile

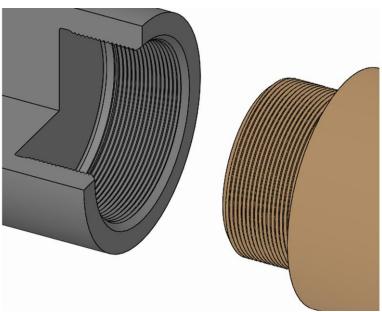
- A Wechselteil Variante direkt verschraubt
- B Wechselteil Variante x-fach axial verschraubt
- B1 Befestigungsschrauben Wechselteil Variante x-fach axial verschraubt
- C Wechselteil Variante x-fach axial verschraubt Bajonett
- C1 Befestigungsschrauben Wechselteil Variante x-fach axial verschraubt Bajonett
- D Wechselteil Variante zentral axial verschraubt
- D1 Befestigungsschraube Wechselteil Variante zentral axial verschraubt
- E Wechselteil Variante radial geklemmt
- E1 Klemmschraube Wechselteil Variante radial geklemmt

GEFAHR

Schwere Verletzungen durch herausgeschleuderte Werkstücke bei fehlenden Wechselteilen!

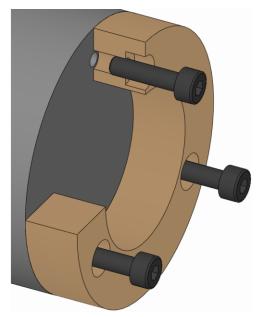
 Ist der Grundanschlag des Produktes demontiert muss zwingend die Schutzbüchse montiert werden.

Je nach Ausführung der Wechselteile werden diese wie folgt demontiert.

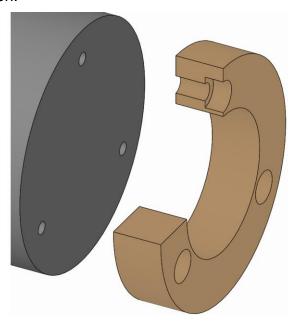

Zusätzlich zu dieser Betriebsanleitung muss gegebenenfalls die Betriebsanleitung der zugehörigen Wechselteile gelesen und beachtet werden.

INFORMATION

Um das Wechselteil demontieren zu können, ist es gegebenenfalls notwendig das Spannelement zuvor zu demontieren.

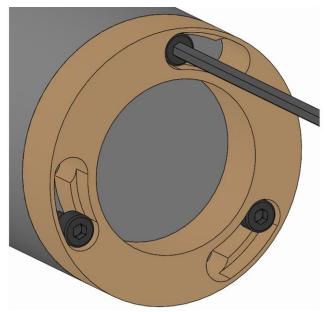

- 1. Die Maschine wie in Kapitel »Vorbereitung der Maschine für die Demontage« beschrieben, für die nachfolgenden Schritte vorbereiten.
- Das Spannmittel in Lösestellung bringen.

10.3.1 Demontage der Variante direkt verschraubt

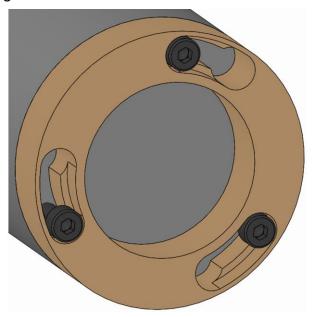


Das Wechselteil über dessen Gewinde aus dem Produkt herausschrauben.

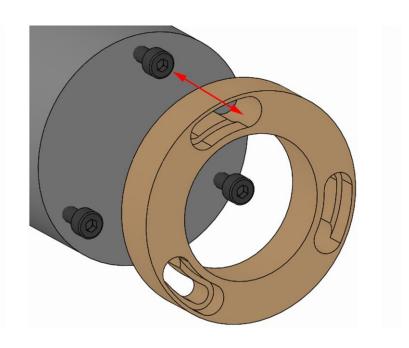
10.3.2Demontage der Variante x-fach axial verschraubt



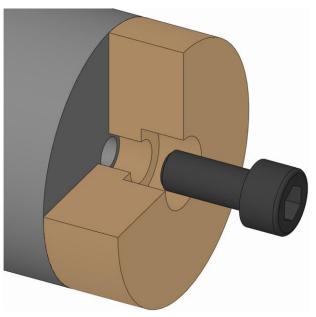
1. Die Befestigungsschrauben Wechselteil lösen und entfernen.



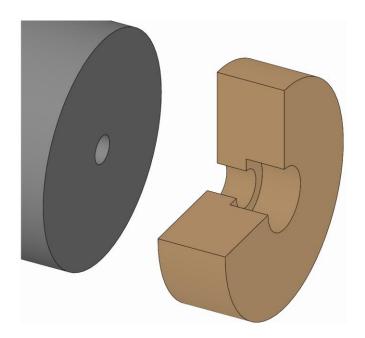
2. Das Wechselteil von dem Produkt herunternehmen.


10.3.3 Demontage der Variante x-fach axial verschraubt Bajonett

Die Befestigungsschrauben Wechselteil einige Umdrehungen lösen ohne diese zu entfernen.



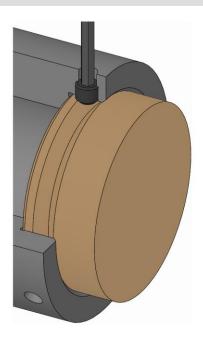
Das Wechselteil verdrehen, sodass der Schraubenkopf der Befestigungsschraube Wechselteil durch die Bajonettöffnung passt.



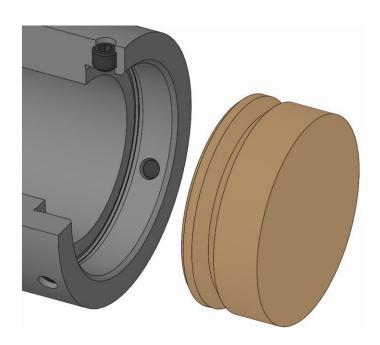
3. Das Wechselteil von dem Produkt herunternehmen.

10.3.4Demontage der Variante zentral axial verschraubt

1. Die Befestigungsschraube Wechselteil lösen und entfernen.

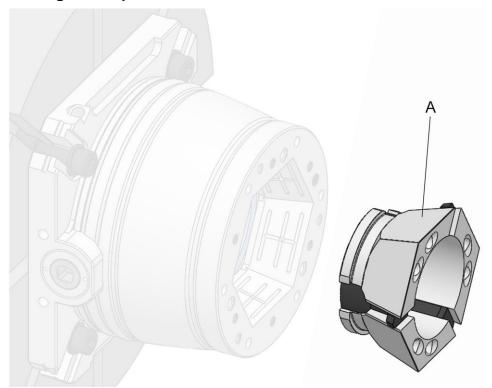

2. Das Wechselteil aus dem Produkt herausnehmen.

10.3.5 Demontage der Variante radial geklemmt



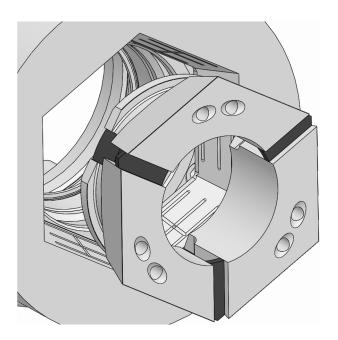
INFORMATION

Zum Einsetzen / Herausnehmen des Wechselteils in das / aus dem Produkt kann gegebenenfalls eine Griffstange oder ein geeignetes Hilfsmittel verwendet werden.



1. Die Klemmschrauben Wechselteil herausdrehen bis sich das Wechselteil herausnehmen lässt.

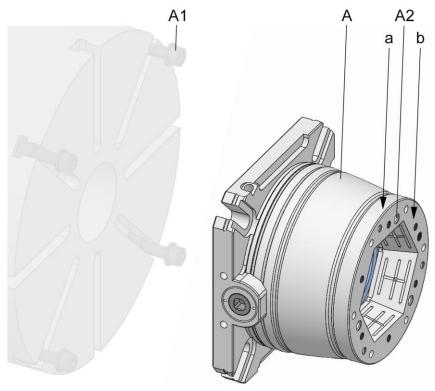
2. Das Wechselteil aus dem Produkt herausnehmen.


10.4 Demontage des Spannelements

A Spannkopf [Spannelement]

Benötigte Sonderhilfsmittel:

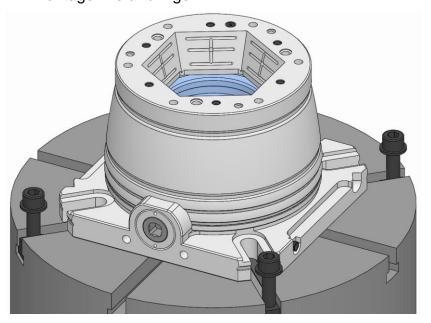
- Wechselvorrichtung
- Die Maschine wie in Kapitel »Vorbereitung der Maschine für die Demontage « beschrieben, für die nachfolgenden Schritte vorbereiten.
- 2. Das Spannmittel in Lösestellung bringen.

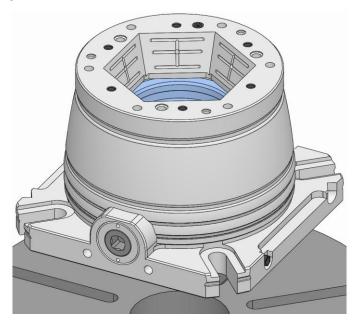


WARNUNG

Schwere Quetschverletzungen durch Hineingreifen in den Kupplungs- / Schlitzbereich des Spannkopfes oder in die Wechselvorrichtung!

- Während der Betätigung niemals in den Kupplungs- / Schlitzbereich des Spannkopfes oder in die Wechselvorrichtung greifen.
- 3. Den Spannkopf mit einer geeigneten Wechselvorrichtung aus dem Produkt herausnehmen.


10.5 Demontage des Produktes


- A Produkt
- A1 Befestigungsschrauben Produkt
- A2 Transportgewinde Produkt
- a Prüffläche Position Produkt
- b Prüffläche Planlauf Produkt
- Die Maschine wie in Kapitel »Vorbereitung der Maschine für die Demontage « beschrieben, für die nachfolgenden Schritte vorbereiten.

10.5.1 Demontage des Produktes von der Maschine

- Die Hydraulikanlage drucklos schalten.
- Die gegebenenfalls notwendigen Anschlagmittel ein-2. bringen.
- Bei einer vertikal hängenden Spindel gegebenenfalls die 3. Montagehilfe anbringen.

Die Befestigungsschrauben Produkt lösen und entfernen.

Das Produkt von dem Maschinentisch herunternehmen.

11 Wartung

11.1 Sicherheit Wartung

WARNUNG

Schwere Verletzungen durch herausgeschleuderte Teile bei Spannkraftverlust!

- Die Wartungs- und Reinigungsintervalle des Produktes sind unbedingt einzuhalten.
- Eine regelmäßige Überprüfung des Wartungszustandes des Produktes durch statische Spannkraftmessung ist zwingend erforderlich.

VORSICHT

Gesundheitsrisiken durch unsachgemäßen Umgang mit Reinigungsmitteln!

 Gefährdungsvorschriften und Sicherheitsdatenblatt des Herstellers beachten.

11.2 Wartungsplan

In den nachfolgenden Abschnitten sind die Wartungsarbeiten beschrieben, die für einen optimalen und störungsfreien Betrieb erforderlich sind.

Sofern bei regelmäßigen Kontrollen eine erhöhte Abnutzung zu erkennen ist, die erforderlichen Wartungsintervalle entsprechend den tatsächlichen Verschleißerscheinungen verkürzen.

Bei Fragen zu Wartungsarbeiten und -intervallen den Hersteller kontaktieren [siehe Kapitel »Kontakt«].

Intervall	Wartungsarbeit	
täglich	Sichtprüfung der Spann- und Anschlagflächen auf Verschleißstellen, Ausbrüchen und Rissen [siehe Kapitel »Sichtprüfung«]	
	Sichtprüfung des Gummis vom Spannelement auf Verschleißstellen, Ausbrüchen und Rissen [siehe Kapitel »Sichtprüfung«]	
	Bei starker Verschmutzung Komplettreinigung [siehe Kapitel »Reinigung «]	
	Statische Spannkraftmessung durchführen	
wöchentlich oder nach 40 Betriebsstunden*	Spannelement demontieren [siehe Kapitel »Demontage des Spannelements«]	
	Spannelement, Spannkegel und Kupplungsbereich reinigen [siehe Kapitel »Reinigung«]	
	Produkt abschmieren [siehe Kapitel »Produkt abschmieren«]	
	Produkt komplett reinigen [siehe Kapitel »Reinigung«]	

Intervall	Wartungsarbeit	
halbjährlich oder nach 1500 Betriebsstunden*	Produkt abschmieren [siehe Kapitel »Produkt abschmieren«]	
bei Lagerung	Siehe Kapitel »Lagerung«	
	* abhängig davon, welche Vorgabe zuerst erreicht wird	
	Tabelle 18: Wartungstabelle	

11.3 Reinigung

WARNUNG

Augen- und Schnittverletzungen durch fehlende Schutzkleidung bei dem Reinigungsvorgang!

- Produkt niemals mit Druckluft reinigen.
- Folgende Schutzausrüstung ist zusätzlich zur Grundausrüstung zu tragen:

HINWEIS

Sachschaden durch unsachgemäße Zerlegung des Produktes!

Das Produkt darf niemals zerlegt werden.

HINWEIS

Beschädigung von Dichtungen durch falsche Lösungsmittel!

- Zur Reinigung des Produktes keine Lösungsmittel verwenden, die die verbauten Dichtelemente angreifen und beschädigen. Werkstoffe der verbauten Dichtelemente können NBR, Viton, PUR sein.
- Zur Reinigung des Produktes keine esterhaltigen beziehungsweise polaren Lösungsmittel verwenden.

HINWEIS

Beschädigung von Spannelementen durch falsche Lösungsmittel!

 Zur Reinigung des Produktes keine esterhaltigen beziehungsweise polaren Lösungsmittel verwenden.

- Die Wechselteile und das Spannelement von dem Produkt demontieren [siehe Kapitel »Demontage der Wechselteile« und Kapitel »Demontage des Spannelements«].
- Das Produkt von der Maschine demontieren [siehe Kapitel »Demontage des Produktes«].
- 3. Alle ohne Zerlegen zugänglichen Flächen des Produktes mit einem esterfreien, nicht polaren Reinigungsmittel und einem weichen, fusselfreien, reißfesten Tuch von allen Öl- und Fettrückständen säubern und auf sichtbare Beschädigungen überprüfen.
- 4. Das Produkt abschmieren [siehe Kapitel »Produkt abschmieren«].

11.4 Sichtprüfung

Es ist täglich eine Sichtprüfung des Produktes vorzunehmen, um frühzeitig gegebenenfalls vorhandene Beschädigungen am Produkt festzustellen.

Dabei ist das Produkt auf Risse und Beschädigungen zu überprüfen, insbesondere die Spann- und Anschlagflächen.

Der Gummi des Spannelements ist ebenfalls auf Risse und Beschädigungen zu überprüfen.

Ebenso muss überprüft werden, ob alle Befestigungsschrauben festgezogen sind.

Bei festgestellter Beschädigung müssen die jeweiligen Bauteile umgehend gegen originale Ersatzteile des Herstellers ausgetauscht werden.

Bei starker Verschmutzung muss das Produkt gereinigt werden [siehe Kapitel »Reinigung«].

11.5 Produkt abschmieren

GEFAHR

Schwere Verletzungen durch herausgeschleudertes Werkstück bei mangelhafter Schmierung des Produktes!

- Der untere Grenzwert der Spannkraft darf niemals unterschritten werden [siehe Kapitel »Spannkraftdiagramm«].
- Die Wartungsintervalle sind zwingend einzuhalten [siehe Kapitel »Wartungsplan«].

Die Schmierung erfolgt bei jeder Reinigung, Wartung, jedem Zusammenbau und zusätzlich bei Bedarf.

Das Produkt ist mit Schmiernippeln ausgestattet.

INFORMATION

Um das Produkt abschmieren zu können, muss das Entlastungsventil frei zugänglich sein, damit das alte Schmierfett austreten kann.

- 1. Das gegebenenfalls frontseitig angebrachten Wechselteil oder das gegebenenfalls montierte Adaptionsspannmittel demontieren.
- 2. Das Produkt in Spannreserve bringen.

WARNUNG

Stoß- und Schnittverletzungen durch Abrutschen beim Schmieren mit einer Kolbenstoßfettpresse!

- Auf die richtige Positionierung der Kolbenstoßfettpresse achten.
- 3. Mit Hilfe der Kolbenstoßfettpresse [nicht im Lieferumfang enthalten] Fett über die Schmiernippel einpressen, bis kein Fett mehr zugeführt werden kann.
- 4. An allen Schmierstellen das austretende, verbrauchte oder überschüssige Fett entfernen und nach den gültigen örtlichen Bestimmungen entsorgen.
- 5. Nach dem Abschmieren mehrmals den gesamten Hub fahren.

11.6 Einsatz von Schmiermitteln

Um eine einwandfreie Laufleistung der Produkte zu erreichen, vorgeschriebene Schmierstoffe verwenden.

Es darf nur Fett verwendet werden, das den zugrundeliegenden Anforderungen bezüglich Haftung, Druckbeständigkeit und Löslichkeit in Kühlschmiermitteln entspricht. Weiter dürfen sich keine Schmutzpartikel im Fett befinden, da diese einen Lauffehler bewirken, wenn sie zwischen zwei Passungsflächen gelangen. Hierfür werden folgende Schmierstoffe empfohlen:

Universalfett GP 355

[siehe HAINBUCH Produktkatalog]

Alternativ:

Schmiermittel	Hersteller	Produktbezeich- nung
	MicroGleit	GP 355
Fett	Klüber	QNB 50
	Zeller & Gmelin	DIVINOL SD24440
	Bremer & Leguill	RIVOLTA W.A.P.

Tabelle 19: Auswahl Schmiermittel

HINWEIS

Fehlfunktion des Produktes durch Kombination unterschiedlicher Fette!

- Unterschiedliche Fette dürfen nicht miteinander vermischt werden.
- Vor Einsatz eines anderen Fettes das Produkt komplett reinigen.

Zum Einbringen des Fettes kann eine Kolbenstoßfettpresse verwendet werden. Die Kolbenstoßfettpresse wird mit dem gewählten Fett befüllt, das in das Produkt eingepresst wird. Dazu verfügt die Kolbenstoßfettpresse über ein Spitzmundstück.

12 Entsorgung

Sofern keine Rücknahme- oder Entsorgungsvereinbarung getroffen wurde, zerlegte Bestandteile der Wiederverwertung zuführen.

HINWEIS

Erheblicher Schaden für die Umwelt durch falsche Entsorgung umweltgefährdender Stoffe!

Produkte, die Verbundwerkstoffe [Mineralguss, CFK] enthalten, müssen zur Entsorgung an die Firma HAINBUCH zurückgegeben werden.

HINWEIS

Erheblicher Schaden für die Umwelt durch falsche Entsorgung umweltgefährdender Stoffe!

Schmier-, Hilfs- und Betriebsstoffe unterliegen der Sondermüllbehandlung und dürfen nur von zugelassenen Entsorgungs-Fachbetrieben entsorgt werden.

Ausgetauschte Öle / Fette in geeigneten Behältern auffangen und nach den gültigen örtlichen Bestimmungen entsorgen.

Die örtliche Kommunalbehörde oder spezielle Entsorgungs-Fachbetriebe geben Auskunft zur umweltgerechten Entsorgung.

13 Störungen

Im folgenden Kapitel sind mögliche Ursachen für Störungen und die Arbeiten zur ihrer Beseitigung beschrieben.

Bei vermehrt auftretenden Störungen die Wartungsintervalle entsprechend der tatsächlichen Belastung verkürzen.

Bei Störungen, die durch die nachfolgenden Hinweise nicht zu beheben sind, den Hersteller kontaktieren [siehe Kapitel »Kontakt«].

13.1 Vorgehen bei Störungen

Grundsätzlich gilt:

- Bei Störungen, die eine unmittelbare Gefahr für Personen oder Sachwerte darstellen, sofort die Not-Aus-Taste der Werkzeugmaschine drücken.
- 2. Störungsursache ermitteln.
- Falls die Störungsbehebung Arbeiten im Gefahrenbereich erfordert, Werkzeugmaschine in den Einrichtbetrieb setzen.
- 4. Verantwortlichen am Einsatzort über Störung sofort informieren.
- 5. Je nach Art der Störung diese von autorisierten Fachkräften des jeweiligen Fachgebietes beseitigen lassen.

₽ INFORMATION

Die im Folgenden aufgeführte Störungstabelle gibt Aufschluss darüber, wer zur Behebung der Störung berechtigt ist.

6. Bei einer Störung, die nicht durch das Produkt verursacht wurde, kann die Störungsursache im Bereich der Werkzeugmaschine liegen. Siehe hierzu die Bedienungsanleitung der Werkzeugmaschine.

13.2 Störungstabelle

Störung	Mögliche Ursache	Fehlerbehebung	Behebung durch
Fehlerhafte Axialhübe im Spannmittel	Verschmutzung der im Kraftfluss befindlichen Bau- teile	Spannelement demontieren und reinigen, falls erforderlich das Spannmittel demontieren und reinigen	Fachkraft
	Lager verschlissen	Lager austauschen	HAINBUCH
Spannelement lässt sich nicht ein- / auswechseln	Fehlerhafte Axial- hübe im Spannmit- tel	Siehe Störung »Fehlerhafte Axialhübe im Spannmittel«	
Spannkraft ist zu gering	Werkstück außer- halb der Durch- messerspannweite	Geeignetes Spannelement verwenden	
	Mechanische Reibung zu groß [Leermoment > 5 Nm]	Spannmittel abschmieren	-
	Fehlerhafter Schmierzustand	Schmierung des Spannmittels überprüfen, falls erforderlich korrigieren	Fachkraft
	Axiale Betäti- gungskraft zu ge- ring	Anzugsdrehmoment des Antriebs überprüfen, falls erforderlich korrigieren	
	Hubbegrenzung durch den Werk- stückanschlag	Geeigneten Werkstückanschlag verwenden	
	Lager verschlissen	Lager austauschen	HAINBUCH
Spannkraft ist zu hoch	Axiale Betäti- gungskraft zu hoch	Anzugsdrehmoment des Antriebs überprüfen, falls erforderlich korrigieren	Fachkraft
Streuende Spannkraft	Fehlerhaftes Fest- ziehen des An- triebs	Antrieb mit dem vorgeschriebenen Anzugsdrehmoment festziehen	Fachkraft
Geometrieabwei- chung am Werk- stück	Rundlauffehler des Spannmittels	Rundlauf des Spannmittels prüfen, falls erforderlich korrigieren	
	Planlauffehler des Spannmittels	Planlauf des Spannmittels prüfen, falls erforderlich Auflageflächen reinigen	Fachkraft
	Verschmutzter Anschlagsbereich	Werkstückanschlag demontieren und Anschlagflächen reinigen	

Störung	Mögliche Ursache	Fehlerbehebung	Behebung durch	
	Verschmutzter Kupplungsbereich am Spannelement	Spannelement demontieren; Kupplungsbereich und Spannele- ment reinigen	_	
	Verschmutzter Spannkegel	Spannelement demontieren und Spannkegel reinigen		
	Formfehler am Werkstück wegen falschem Spann- elementtyp	Geeignetes Spannelement verwenden	-	
	Elastische Verfor- mung	Spannkraft auf das für das Spann- mittel und das Werkstück gültige Maß reduzieren	-	
		Material des Werkstücks überprüfen		
Abdrücke auf der Spannfläche	Spannkraft ist zu hoch	Spannkraft auf das für das Spann- mittel und das Werkstück gültige Maß reduzieren		
	Falscher Spann- elementtyp	Geeignetes Spannelement verwenden		
	Verschmutztes Spannelement	Spannelement reinigen	Fachkraft	
	Beschädigtes Spannelement	Spannelement austauschen		
	Maßdifferenz zwischen Werkstückdurchmesser und Spannelemente ist zu groß	Spannelement mit passendem Spanndurchmesser verwenden	_	

Tabelle 20: Störungstabelle

13.3 Inbetriebsetzung nach behobener Störung

Nach dem Beheben der Störung die folgenden Schritte zur Wiederinbetriebsetzung durchführen:

- Not-Aus-Einrichtungen zurücksetzen.
- 2. Störung an der Steuerung der Werkzeugmaschine quittieren.
- 3. Sicherstellen, dass sich keine Personen im Gefahrenbereich aufhalten.
- 4. Werkzeugmaschine starten.

14 Anhang

14.1 Kontakt

Für Bestellungen, Termine und Notfälle stehen Ihnen folgende Hotlines zur Verfügung.

Bestell-Hotline

Schnell bestellt, schnell geliefert. Anruf genügt:

+49 7144, 907-333

Termin-Hotline

Aktueller Status Ihrer Bestellung? Einfach anrufen:

+49 7144. 907-222

24h-Notruf

Crash gefahren oder ein anderer technischer Notfall? Unsere Experten sind rund um die Uhr für Sie da:

+49 7144, 907-444

Beratung oder Hilfestellung stehen die unter www.hainbuch.com aufgeführten Vertriebspartner und Service-Mitarbeiter zur Verfügung.

14.2 Herstellerbescheinigung

Die Herstellerbescheinigung wird mit dem Produkt und dessen Anleitung ausgeliefert.

MANOK plus Anhang

MANOK plus Anhang

Indexverzeichnis

A	Hydraulikrachkraft	13
Aufbau 30	Pneumatikfachkraft	13
Auspacken56	Produktionsende	85
В	Prüfungen	78
Bestimmungsgemäße Verwendung 14	R	
Betriebsbedingungen29	Reinigung	99
D	S	
Definition von Begriffen9	Schmiermittel	102
Demontage	Schmierstoffe	23
Produkt 96	Schraubenanzugsdrehmomente	
Spannelement94	Aluminiumbauteile	62
Vorbereitung der Maschine 88	Metrische Regelgewinde	62
Wechselteil88	Schutzausrüstung	
Drehzahl26	Arbeitskleidung	17
E	Haarnetz	
Einsatzgrenzen34	Schutzbrille	17
Ersatzteile11	Schutzhandschuhe	17
F	Schutzhelm	17
Fehlgebrauch15	Sicherheitsschuhe	17
G	Sicherheit	
Garantie11	Allgemein	12
Gefahren18	Demontage	
Н	Inbetriebsetzung	
Haftung 10	Montage	
K	Transport, Verpackung, Lageru	ung 54
Konservierung57	Wartung	98
Kurzbeschreibung30	Störungen	104
L	Störungstabelle	105
Lagerung57	Symbole auf der Verpackung	55
Leistungswerte24	Symbolerklärung	8
Lieferumfang10	T	
М	Technische Daten	24
Montage	Transport, innerbetrieblich	56
Produkt 63	Transportinspektion	55
Spannelement66	Typenbezeichnung	29
Vorbereitung der Maschine 62	U	
Vorbereitung des Produktes 63	Überprüfung des Gesamthubs	78
Wechselteil 68	Umweltschutz	23
P	Urheberschutz	10
Personalanforderungen12	V	
Auszubildende14	Verpackung	56
Elektriker13	Verwendung	34
Fachkraft 13		

MANOK plus

W	Backenmodul31
Wartungsplan98	Magnetmodul31
Wuchtgüte25	MANDO Adapt31
Z	Morsekegel Adaption32
Zubehör, benötigt	Stirnmitnehmer Adaption32
Schutzbüchse31	Zubehör, Sonderhilfsmittel
Spannkopf30	Drehmomentschlüsselsatz32
Werkstückanschlag31	Schlüssel33
Zubehör, optional	Schlüssel ohne Griffstange33
Anschlagsystem vario part32	Wechselvorrichtung manuell33
Anschlagsystem vario quick 32	Wechselvorrichtung pneumatisch .33

HAINBUCH GMBH · SPANNENDE TECHNIK

Postfach 1262 · 71667 Marbach / Erdmannhäuser Straße 57 · 71672 Marbach · Germany Tel. +49 7144.907-0 · Fax +49 7144.18826 · verkauf@hainbuch.de · www.hainbuch.com **24h-Notruf** + 49 7144.907-444